
emicklei@philemonworks.com

Ernest Micklei
emicklei@philemonworks.com
Amersfoort, The Netherlands

ESUG 10th
Douai, August 29 2002

emicklei@philemonworks.com

  RSI (Repetitive Strain Injuiry)
  Fast access to simple programs (=objects)
  Explore mixed interfaces (pixels-ASCII)
  Simplest UI possible
  client-server
  module for SmallScript

emicklei@philemonworks.com

  A widget displays an aspect of an object in a
defined region of a window

  A region is defined by a rectangular area of
characters organized in rows and columns

  Keyboard events are handled by the controller
of the widget (MVC)

emicklei@philemonworks.com

  TerminalForm is a UI component that displays
a grid of ASCII characters

  For displaying, widgets map their contents to
characters of that grid

emicklei@philemonworks.com

  Core classes are:
 TerminalCharacter
 TerminalGrid
 TerminalWidget
 TerminalController

  Others
 CompositeWidget, Appearance, Form

emicklei@philemonworks.com

S M A L L T A L K

(grid at: (1@2)) = $M

access by Points: row@column

emicklei@philemonworks.com

  Terminal screen is showing a matrix of
graphical characters organized in rows and
columns.

  TerminalCharacter
  TerminalGrid

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

emicklei@philemonworks.com

  holds collection of TerminalCharacter
  read/write strings to grid (matrix)
  for display only

 Terminal OS-window holds grid

emicklei@philemonworks.com

| window txt |

"window"
window := TerminalWidget textClass in: (1@1 corner: 24@80).

"build"
txt := TerminalWidget textClass in: (1@1 corner: 8@20).
txt string: 'This is a Smalltalk terminal application'.
window add: txt.

"open"
Terminal show: window

emicklei@philemonworks.com

| window list |

"window"
window := TerminalWidget windowClass in: (1@1 corner: 24@80).

"build"
list := TerminalWidget listClass in: (1@1 corner: 8@20).
list items: #('ESUG' '10th' 'Douai' 'France').
window add: list.

"open"
Terminal show: window

emicklei@philemonworks.com

| window list |

"window"
window := TerminalWidget windowClass in: (1@1 corner: 24@80).

"build"
image := TerminalWidget imageClass in: (1@1 corner: 8@20).
image bitmap: (Bitmap fromFile: 'splash.bmp').
window add: image.

"open"
Terminal show: window

emicklei@philemonworks.com

| window list |

"window"
window := TerminalWidget windowClass in: (1@1 corner: 24@80).

"build"
menu := TerminalWidget menuClass in: (1@1 corner: 4@20).
menu add: '1. Stockrates' key: $1 do: [self startStockrateView].
menu add: '2. Accounts' key: $2 do: [self startAccountView].
menu addLine.
menu add: '3. Invoices' key: $3 do: [self startInvoicesView].
window add: menu.

"open"
Terminal show: window

emicklei@philemonworks.com

| window list |

"window"
window := TerminalWidget windowClass in: (1@1 corner: 24@80).

"build"
menuBar := TerminalWidget menuBarClass in: (1@1 corner: 1@80).
menuBar add: 'File' key: $f menu: self fileMenu.
menuBar add: 'Edit' key: $o menu: self editMenu.
menuBar add: 'Help' key: $h menu: self helpMenu.
window add: menuBar.

"open"
Terminal show: window

emicklei@philemonworks.com

  is top container for terminal windows
  can show, hide and (will in future) stack

windows

  implementation is dialect specific
 but requires minimal behavior

emicklei@philemonworks.com

  widgets claim a region of the screen
  has a controller to handle keyboard events
  has a model for storing its domain value
  has an appearance
  is the "V" in MVC
  when:send:to:, broadcast: (AOS)

emicklei@philemonworks.com

  displays a single character in some (fixed) font
  can display decoration (border lines)
  has an appearance

emicklei@philemonworks.com

  character (re)display
  inputController
  appearance

emicklei@philemonworks.com

  observation: painting complete screen is too
expensive

  damage rectangles intersection is too
expensive

  widget knows which characters to update

  but, does not help with overlapping OS-
windows
 may need double buffering

emicklei@philemonworks.com

  like the VW ParagraphEditor, but...
  break text into lines, localizing updates
  replace CRLF with CR

 every character takes up one space
  cursor can be beyond text
  cursor can be on CR position
  adopt color emphasis
  scrolling (vertically only)
  no TAB

emicklei@philemonworks.com

  window appearance
  widget appearance
  character appearance
  properties "inherited" by composition hierarchy
  modifiable at each "level"

emicklei@philemonworks.com

TerminalObjectAppearance (abstract superclass)
 foreground background selectionForeground
selectionBackground

 TerminalWindowAppearance
 font fontName characterWidth characterHeight

 TerminalWidgetAppearance
 windowAppearance borderColor
showBorderOnFocus

 TerminalCharacterAppearance
 widgetAppearance

emicklei@philemonworks.com

  finds colors from parent appearance
 a WindowAppearance

  but can override values by replacing nil-values
  example:

TerminalObjetAppearance>>background

 ^background isNil
 ifTrue:[self hasParent
 ifTrue:[nil]
 ifFalse:[self parentAppearance background]]
 ifFalse:[background]

emicklei@philemonworks.com

  initially meant for per-character coloring
  became obsolete when introducing

EmphasizedText
 VA rewrite of VW Text

  'ESUG' asEmphasizedText
 from: 1
 to: 2
 setForeground: Color yellow

emicklei@philemonworks.com

  demo

emicklei@philemonworks.com

  demo

emicklei@philemonworks.com

  shell interface to an almost empty object space
(image)

  demo

emicklei@philemonworks.com

  implementation issues
  design issues
  fit of purpose issues
  exploring the "Smalltalk Objects Shell"

emicklei@philemonworks.com

  rewrite InputController
 got tips from Samuel Shuster

  finish port from VAST to SmallScript
 put it on the web

  text selection for InputController
 cut,copy,paste

  handle OS-paints
  build from Pollock XML?

emicklei@philemonworks.com

  display methods
 draw a line
 draw a String character
 set colors

  dispatch keyboard events
  handle focus events
  have a window to paint on

  (almost) done for SmallScript

emicklei@philemonworks.com

  how to design characterbased applications
 and still be object-oriented

  what do I need for client-server architecture
 maybe TELNET is fine, why bother

  missing widgets? buttons,dropdowns
 do I really want to mimic Windows

emicklei@philemonworks.com

  motivation for porting to "imageless"
SmallScript

  use objects in stead of just (fat)executable

  think about what objects are really powerful
but do not need a UI
 graphical image processing
 3D language generators

emicklei@philemonworks.com

  Re-inventing wheels? (curses)
  Is mixing character-based and full graphics

only just "yes we can do-it" ?
  Will performance be acceptable ?

emicklei@philemonworks.com

  Can be done (what else would you expect)
  Might be useful
  Mixing with other widgets not explored
  Highly portable (to other dialects)
  Mouseless apps

emicklei@philemonworks.com

Reference module: PhilemonTerminalView.

[
 | window | := Terminal windowClass in:(1@1 corner: 20@40).
 | text | := Terminal textClass in:(2@2 corner: 19@39).
 window add: text.
 Terminal show: window

]

".dll = 56kB"

emicklei@philemonworks.com

download @
http://www.philemonworks.com

