
i

Table of Contents

Presented at Smalltalk Solutions 2002

eXtremeMetaProgrammers

Solving the XP Legacy
Problem with (Extreme)

Meta-Programming
Author(s): Niall Ross and Andrew McQuiggin
Date: 20 April 2002
Reference: XMP/meta-test/pres/0005/1.0

XMP
XMP/meta-test/pres/0005/1.0

Publication history iii

About this document v
 Intended audience .v
 Conventions used .v
 Acknowledgements . vi
 References . vi

Slides 1
Notes 16

1.1 Our Approach .16
1.1.1 Title slide .16
1.1.2 Overview .16
1.1.3 Meta-Programming .16
1.1.4 The XP Legacy Problem .17
1.1.5 Getting a Handle on Legacy .17
1.1.6 Our Approach: Fundamentals .18
1.1.7 Obtaining Tests to Compare .18
1.1.8 Test Browser Framework .19
1.1.9 Test results in the Test Browser .20
1.2 Meta-Programming Frameworks .20
1.2.1 Base Deep Comparison Framework .21
1.2.2 Customisable Deep Comparison Framework .21
1.2.3 Tools (that helped us meta-program) .22
1.3 Demo .23
1.4 Discussion: Value of this Work .23
1.4.1 Future Directions .23
1.5 Other Remarks (no slides for these) .23
1.5.1 Using Deep Comparison to Refine our definition of ‘Behaviour’ 24
1.5.2 Other Uses of the Test Browser .24
1.5.3 Comparison Framework Optimisation .24
1.5.4 ‘Move to Component’ Refactoring .24
1.6 Issues .24
1.7 Platforms .25
Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
ii Table of contents
Solving the XP Legacy Problem with (Extreme) Meta-Programming

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002

iii
Publication history
September 2002

Issue 1.1. Minor edit of Notes chapter to correct errors and improve
phrasing

April 20th 2002
Issue 1.0. Version presented at Smalltalk Solutions on April 23rd 2002.

April 2002
Issue 0.1. Version provided for inclusion in conference CD.
XMP/meta-test/pres/0005/1.0

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
iv Publication history
Solving the XP Legacy Problem with (extreme) Meta-Programming

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002

v

About this document
Key to XP is that test-driven development also supports refactoring; tests
reveal when a refactoring breaks the system. When XP is introduced to a
large existing system, writing tests for the legacy is a sysiphesean task
which lacks the synergy of writing tests in test-driven development.
Without them, however, refactoring is constrained to stay within the area
of new XP development or else be unsafe.

We (Niall Ross of eXtremeMetaProgrammers and Andrew McQuiggin of
HECM) used meta-programming to help introduce XP into a large
financial system. We subclassed the standard SUnit framework and
browser to support deep comparison of data captured by tests run in pre-
and post-refactor images. By combining these techniques with a feasibly
small set of basic application-specific tests, we aim to achieve a test set for
the legacy that is sufficient to make refactoring safe. This talk describes our
approach, our experience with it to date, and indicates the kind of systems
to which these techniques are appropriate.

Intended audience
Smalltalkers who want to introduce XP into legacy systems.

Smalltalkers with an interest in meta-programming.

Conventions used
Meta-data: data describing domain classes and behaviours that, in a
conventional system, would be embodied as hard-coded classes and
methods; not to be confused with meta-programming

Meta-programming: in this talk, meta-programming means use of the
Smalltalk meta-protocol to write methods that walk and manipulate
arbitrary object graphs; the term also has other legitimate meanings

XP: eXtreme Programming

VA: VisualAge Smalltalk

VW: VisualWorks Smalltalk
XMP/meta-test/pres/0005/1.0

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
vi About this document
Acknowledgements
Our work benefited from examining utilities produced by Paul Baumann
and John Brant.

References
[1] Custom Deep Copies, Paul Baumann, The Smalltalk Report 7 5 March/April 1998

(copy of article plus utility in Smalltalk archive)

[2] The Business Case for Adequate Reflection, Niall Ross, 8th European Smalltalk
Summer School, Ghent, 30th August - 3rd September 1999 (navigate from
http://www.esug.org/)

[3] XP-rience: eXtreme Programming Experience, Niall Ross, Camp Smalltalk 3 and
10th European Smalltalk Summer School, Essen, 25th August - 1st September
2001 (navigate from http://scgwiki.iam.unibe.ch:8080/SmalltalkWiki/117)
Solving the XP Legacy Problem with (extreme) Meta-Programming

Presented at Smalltalk Solutions 2002

Smalltalk Solutions 2002

XMP/meta-test/pres/0005/1.0
ving XP Legacy with (Extreme) Meta-Programming

eXtreme Meta-Programmers

XMP

Slide No:
Niall Ros

blem with
mming
ed)

ogrammers

ECM

ahoo.com

These ersion was included on the CD distributed
at the ng chapter, is on the conference website.
eXtreme Meta-Programmers
 1 — 20 April 2002
s, Andrew McQuiggin

Solving the XP Legacy
(eXtreme) Meta-Pro

Version 1.0 (pres

Niall Ross, eXtremeMeta

Andrew McQuiggin

nfr@bigwig.net amcquig

are the slides of the talk presented at Smalltalk Solutions 2002. An earlier rou
conference. This later, much more developed version, with detailed notes in t
Sol

Pro
gra
ent

Pr

, H

gin@y

gh draft v
he followi

Smalltalk Solutions 2002

XMP/meta-test/pres/0005/1.0
lving XP Legacy with (Extreme) Meta-Programming

eXtreme Meta-Programmers

XMP
eXtreme Meta-Programmers So
Slide No: 2 — 20 April 2002
Niall Ross, Andrew McQuiggin

Overview

• Motives for this work and for this talk
— Meta-Programming: a Smalltalk enabler?
— XP Legacy: the problem

• Our Approach
• Implementation

— Obtaining Tests to Compare
— Test Browser Framework
— Deep Comparison Framework

• Discussion: Value of this Work
— SUnit extention ?
— Standard Meta-Programming frameworks ?

Smalltalk Solutions 2002

XMP/meta-test/pres/0005/1.0
lving XP Legacy with (Extreme) Meta-Programming

eXtreme Meta-Programmers

XMP

g
d manipulate object graphs, ...

nipulate program structure as
ams are slow to deliver.
 is replicated as patterns.
eeding program overrides).

y many times to build generic).
nd behaviour upwards

 is natural extention
rrides of meta-program

 and meta-program
 Smalltalk enabler. This talk
an we make it happen?
eXtreme Meta-Programmers So
Slide No: 3 — 20 April 2002
Niall Ross, Andrew McQuiggin

Meta-Programmin
Meta-program verb ..., use meta-object protocol to walk an

Secondary Subject of this Talk
Pure programs manipulate data. Pure meta-programs ma
data. Pure programs are slow to change. Pure meta-progr
• program: code that should be meta-programmed once
• quick meta-program: 90% right but 10% wrong (i.e. n
• Correct meta-program: too late (must solve specificall
Good OO systems grow by refactoring state downwards a
• behaviour upward: moving behaviour to meta-program
• state downward: state includes program behaviour ove
Smalltalk is exceptionally well-suited to
• writing mixed program and meta-program systems
• incrementally refactoring behaviour between program
Meta-programming patterns and frameworks should be a
refers to one practical use. Who else is working on this? C

Smalltalk Solutions 2002

XMP/meta-test/pres/0005/1.0
lving XP Legacy with (Extreme) Meta-Programming

eXtreme Meta-Programmers

XMP

lem

 (desired) behaviour.

y:
ing
serving refactor

for others’ old code

u’ve found enough
as due to legacy; systems that
’t because they couldn’t. Now
eXtreme Meta-Programmers So
Slide No: 4 — 20 April 2002
Niall Ross, Andrew McQuiggin

The XP Legacy Prob
Refactor verb colloq. to improve (a program)
Refactor verb to change implementation without changing

Extreme programming relies on a synerg
• Test-driven development: writing tests first speeds cod
• Refactoring: pass tests => change was a behaviour-pre

Legacy breaks this synergy:
• No XP test suite => no safe refactoring
• Hard to write post-hoc tests for your old code, harder

— tedious labour with no test-driven synergy
— hard to sell management (and self) on task’s value
— hard to find the assertions, much harder to trust yo

But much of Smalltalk’s survival through the lean years w
‘will be rewritten in Java in the next two years’ but weren
these programs need refactoring and want to use XP.

rogrammers

Smalltalk Solutions 2002

XMP/meta-test/pres/0005/1.0
Solving XP Legacy with (Extreme) Meta-Programming

XMP

le on Legacy
tems ?) has certain features.

hase, test spec documents, etc.
ole effort-heavy test phase
-month release

many permissions
er) ‘narrow’ subsystems

ll generic state model
rrors/warnings raised by small protocol
ite set of widgets

ealized from compact data in DB

Persistent
Store

s

eXtreme Meta-P

eXtreme Meta-Programmers

Slide No: 5 — 20 April 2002
Niall Ross, Andrew McQuiggin

Getting a Hand
Our system (and other Smalltalk legacy sys
• It has been tested

— standard waterfall-style distinct test p
— non-XP: each refactor invalidates wh

• Only a subset of behaviour changes per 3
— hundreds of products, many options,

• Complex hehaviour passes though small(
— States: rich specific detail within sma
— Business Logic Validation: complex e
— View layer: many forms built from fin
— Persistence layer: complex products r

UI Busines
Logic

Smalltalk Solutions 2002

XMP/meta-test/pres/0005/1.0
lving XP Legacy with (Extreme) Meta-Programming

eXtreme Meta-Programmers

XMP

entals

 Tests

 (desired) behaviour.

at the end of an operation, ...

s

bsystem(s)

e behaviour from user’s view

rTest narrowRoot)

-)
eXtreme Meta-Programmers So
Slide No: 6 — 20 April 2002
Niall Ross, Andrew McQuiggin

Our Approach: Fundam

Deep Comparison of

Refactor verb to change implementation without changing

Behaviour noun ... , (in OO) a network of objects existing

• The tested behaviour of the latest release is acceptable
• All the supported products go through same basic state

create, update, validate, save, ...
• Each state expresses some key behaviour in narrow su

— Validation, UI, DB interface
• same object network within narrow subsystem => sam

self assert:
(releaseTest narrowRoot deepCompareTo: refacto

(Of course, it’s not quite that simple :

Smalltalk Solutions 2002

XMP/meta-test/pres/0005/1.0
lving XP Legacy with (Extreme) Meta-Programming

eXtreme Meta-Programmers

XMP

pare

stemEtc

m stored data

. productStandingData ...

other tests)
pecific example data
ther assertions added as you

ertion.)
narrow subsystem root, e.g.

mples are also somewhat simplified
eXtreme Meta-Programmers So
Slide No: 7 — 20 April 2002
Niall Ross, Andrew McQuiggin

Obtaining Tests to Com
• Write some basic test classes and methods
GenericProductScenarioTC testChosenNarrowSubsy

• Create test instances for each specific product type fro
1testSuite addTests:

persistentProductData collect: [...
GenericProductScenarioTC keyInstVar: ..

• Test moves product to scenario’s basic state by
— reusing stored product instance data (synergy with
— using ‘example instances’: generated class/widget-s
Assertions check that the scenario’s state is reached. (O
know how and have time; deep comparison is main ass

• Basic test deepCopies appropriate graph from chosen
— Business Logic Validation system root
— Product’s top-level view

1. This code is vastly simplified to give an overview; later code exa

Smalltalk Solutions 2002

XMP/meta-test/pres/0005/1.0
lving XP Legacy with (Extreme) Meta-Programming

eXtreme Meta-Programmers

XMP

ork

ing superclass’ instances
ble to test in packaged images)
t TestResult
ased) state
 run, added to current Result
 result
eviously-run tests

test on its two run copies
eXtreme Meta-Programmers So
Slide No: 8 — 20 April 2002
Niall Ross, Andrew McQuiggin

TestBrowser Framew
Subclasses the SUnit and SUnitBrowser frameworks:
• ComparisonTestResult has a ComparisonTestCase

— both have instvars: ‘earlierResult laterResult’ hold
• Test Browser is packagable (coy. process required be a
• Test Browser holds multiple TestResults; one is curren

— create test result, run selected tests in start (e.g. rele
– tests in Browser’s suite copied (with key values),
– rerunning overwrites previous copies in current

— get new result, effect refactor, rerun (all or some) pr
– new copies run and added to new current result

— create comparison result for these two results
– invoking ‘run’ on a test now runs a comparison

— get more results, do more refactors
– re-run tests, compare with released, with last, ...

Smalltalk Solutions 2002

XMP/meta-test/pres/0005/1.0
lving XP Legacy with (Extreme) Meta-Programming

eXtreme Meta-Programmers

XMP

rowser
ow outcome (i.e. as usual)

parison test on tests keyed by

mparison test assertions (i.e.
 tests)
fy comparison test assertions
on test assertions not executed
cident)

lts + contents

l comparisons
eXtreme Meta-Programmers So
Slide No: 9 — 20 April 2002
Niall Ross, Andrew McQuiggin

Test Results in the Test B
‘Run’ when TestResult being viewed: run selected test, sh
• Pass: test completed and satisfied all its assertions
• Fail: test completed but did not satisfy all its assertions
• Error: test did not complete
‘Run’ when ComparisonTestResult being viewed: run com
selected test in earlierResult and laterResult
• Pass: both tests had same outcome and satisfied the co

deep comparison of object graphs captured by the two
• Fail: both tests had the same outcome but did not satis
• Error: tests did not even have same outcome (comparis

in this case as they could be met only by misleading ac
Comparisons can be inter-image

— Browser supports dumping and loading of TestResu
or intra-image

— deep copying object graphs on capture avoids trivia

Smalltalk Solutions 2002

XMP/meta-test/pres/0005/1.0
lving XP Legacy with (Extreme) Meta-Programming

eXtreme Meta-Programmers

XMP

amework
 we not looking hard enough?)

mework
d sorted comparison

isonStrategy
: self) allSatisfy:

ex)
x ifAbsent: [nil])])...

or:...
econd)

second]

der in RB
eXtreme Meta-Programmers So
Slide No: 10 — 20 April 2002
Niall Ross, Andrew McQuiggin

Base Deep Comparison Fr
(We found few examples1, none for deep comparison; are

Key issues in building meta-programming comparison fra
• collection comparison: backtracking for unordered an
• very flexible comparison customisation
Basic Framework: Strategy class and Object methods

Object>>compareStructureTo: anObject
^self class == anObject class

Object>>compareContentsTo: anObject using: compar
^((comparisonStrategy comparableInstVarIndices

[:instVarIndex | comparisonStrategy
compare: (self instVarAt: instVarInd
to: (anObject instVarAt: instVarInde

ComparisonStrategy>>compare: first to: second
... self hasAlreadyCompared: first to: second)

compareStructureBlock value: first value: s
and: [visited at: first put: second.

compareContentsBlock value: first value:

1. Paul Baumann’s CustomDeepCopy in ST Archive, ReferenceFin

Smalltalk Solutions 2002

XMP/meta-test/pres/0005/1.0
lving XP Legacy with (Extreme) Meta-Programming

eXtreme Meta-Programmers

XMP

n Framework

one in layers
gletons, etc

, immediates, truncation, etc
under test

nil-equivalent blocks
stVars

entDependents);
ase;

ited dictionary

elf testClient.
eXtreme Meta-Programmers So
Slide No: 11 — 20 April 2002
Niall Ross, Andrew McQuiggin

Customisable Deep Compariso
Two routes to customisation
• (per compared class) Override comparison methods; d

— Vendor (VA, VW so far): vendor-specific classes, sin
— General: default comparison choices for collections
— System: default test comparison choices for system

• (per comparison) Customise strategy before (re-)using
— Choose methods via blocks: structure, content and
— Class-oriented, via strategy’s filtering of object’s in

aComparisonStrategy
ignore: BusinessModel atAll: #(#identifier #ev
ignore: ProposalSummaryModel at: #savedToDatab
ignore: ValidationCache at: #validationBlock;
compareRoot: first to: second

— Instance-oriented, via pre-populating strategy’s vis
aCopyStrategy ignore: view holder.
aCopyReplaceStrategy at: view model client use: s
aComparisonStrategy nextDifference.

Smalltalk Solutions 2002

XMP/meta-test/pres/0005/1.0
lving XP Legacy with (Extreme) Meta-Programming

eXtreme Meta-Programmers

XMP

-program1)
n strategy and methods

ed different protocol
’s why I wrote ConstrainedRF)
dumpers compare?

are? (We may explore this.)
ed by ‘rename instVar’
erride (a common action)

inson’s code quality tools, etc., etc.
eXtreme Meta-Programmers So
Slide No: 12 — 20 April 2002
Niall Ross, Andrew McQuiggin

Tools (that helped us meta
Dynamic type recovery tools speed customising compariso
• We used SmallTyper (VA)
• The Analysis Browser works similarly (VW)
• Do other dialects have such tools ?
Serialization for inter-image test result comparison
• We used standard VAST dumper / loader

— needed same customisations as our strategies but us
— implemented with primitives so hard to debug (that
Is there an easy way to debug? How do other dialects’

Tools wanted
• Make Refactoring Browser meta-program-protocol aw

— safer: e.g. warn or rewrite strategy ovverides affect
— easier: refactor per strategy override to per class ov

1. We also used the RB (massively), MethodWrappers, Greg Hutch

Smalltalk Solutions 2002

XMP/meta-test/pres/0005/1.0
lving XP Legacy with (Extreme) Meta-Programming

eXtreme Meta-Programmers

XMP

s
cted tests
 amber and red results
ing an inspector
detect amber-comparing tests’
w paths to it are identical)

sult, then comparison result

ot different, behaviour
ult to package, rerun, compare
terface subgraphs before/after

 scenarios testable
eXtreme Meta-Programmers So
Slide No: 13 — 20 April 2002
Niall Ross, Andrew McQuiggin

Demo I
Launch browser, demo features1.
• load test result, rename it and rerun three selected test
• do trivial refactor and create new test result, rerun sele
• create comparison result for two results, rerun to show

— Show the difference found by amber comparison us
– (if time allows, let ConstrainedReferenceFinder

non-comparing values from tests’ roots, then sho
• fix refactor, rerun amber-comparing test in refactor re

— formerly-failing comparison test now passes

Mention other uses of comparison test framework:
• user permissions: verify more permissions give more, n
• packaging: run tests in development image, export res
• external changes: compare results of tests capturing in

1. No database access from Cincinnati so only new product creation

Smalltalk Solutions 2002

XMP/meta-test/pres/0005/1.0
lving XP Legacy with (Extreme) Meta-Programming

eXtreme Meta-Programmers

XMP
eXtreme Meta-Programmers So
Slide No: 14 — 20 April 2002
Niall Ross, Andrew McQuiggin

Demo II
Viewing the Comparison Result at the end of the demo.

Smalltalk Solutions 2002

XMP/meta-test/pres/0005/1.0
lving XP Legacy with (Extreme) Meta-Programming

eXtreme Meta-Programmers

XMP

s Work

products

?

ul and more standard
nedReferenceFinder, using
or the extra features; easy !!!
?

ust I write it (any co-authors)?
eXtreme Meta-Programmers So
Slide No: 15 — 20 April 2002
Niall Ross, Andrew McQuiggin

Discussion: Value of thi
For eXtreme Programming ?

• Test Browser could be made public domain
— e.g. as SUnit(Browser) add-on at Camp Smalltalk

• Key instVars for TestCases
— arose naturally from system’s use of data to define
— comparison tests catch key mismatches
— Is this safe? Is this in accord with SUnit philosophy

For Meta-Programming ?
• Meta-Programming framework(s) can be more powerf

— e.g., I subclassed RB’s ReferenceFinder to Constrai
same protocol and implementation as my strategy f

Would a common protocol or common framework be used
‘Smalltalk Best Practice Meta-Patterns’: Can I buy it? M

Presented at Smalltalk Solutions 2002

16
Presentation 1 Slide Notes:
Solving the XP Legacy Problem with
(Extreme) Meta-Programming

The text in sections 1.1 through 1.4 constitutes notes to the slides. Each
subsection heading is the title of the corresponding slide.

1.1 Our Approach
Key to XP is that test-driven development also supports refactoring; tests reveal
when a refactoring breaks the system. When XP is introduced to a large existing
system, writing tests for the legacy is a sysiphesean task which lacks the synergy
of writing tests in test-driven development. Without them, however, refactoring
is constrained to stay within the area of new XP development or else be unsafe.

1.1.1 Title slide
For all I know, there is a solution to the XP legacy problem already in the public
domain. But one thing I’ve learned from the web is that they can write the stuff
faster than I can read it. Today I will present the solution that Andrew and I have
pursued in hopes to learn more.

1.1.2 Overview
This talk begins by explaining our motives for this work and for this talk, which
are two-fold: an interest in meta-programming and a need to use XP on legacy.
Next I describe our approach in outline and then in detail. After a demo, we shall
discuss the possible value of this work to XP and/or meta-programming.

1.1.3 Meta-Programming
I have experience of several kinds of meta-programming. The meaning we
needed for the work I’m about to describe is simply, ‘using Smalltalk’s meta-
object protocol to walk and manipulate arbitrary object networks built from
classes unknown in advance.’

I have a secondary aim in presenting this fairly trivial example of meta-
programming. I’ve often thought that meta-programming frameworks should be
more commonly used in production code, and more publicly known, than I’ve
found them. (Of course, it might be that they are and I’m just not looking in the
right places.)
XMP/meta-test/pres/0005/1.0

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
17 Solving the XP Legacy Problem with (Extreme) Meta-Programming
Pure meta-programming solutions to commercial problems are hard. A
completely correct meta-algorithm can only be developed slowly from several
well-understood examples, the exact opposite of the usual commercial scenario
where a window of opportunity for a new imperfectly-understood problem must
be hit acceptably. Worse, if a complex meta-algorithm supports the current
portfolio, one dare not hack a change into it on a short timescale. Quickly-
refactored meta-algorithms are typically 90% right and a very-hard-to-
understand-and-fix 10% wrong. But this 10% is usually easy to handle
acceptably at the programming level, thus a seamless mixed program-and-meta-
program framework is commercially viable. As importantly, such a framework
allows for the piecemeal refactoring of behaviour to a meta-behaviour on longer
timescales.

This is the application to meta-programming of a general truth about OO
systems. Ralph Johnson has pointed out that a living OO system evolves to
refactor state downwards (as the system becomes able to handle more situations)
while refactoring behaviour upwards (as specific behaviours are recognised as
examples of more general patterns). Refactoring behaviour into meta-behaviour
is a natural extension of this rule.

Why am I delaying the start of the main talk with these reflections? Well,
because I think Smalltalk is particularly well suited to building frameworks in
which refactoring between the program and meta-program layers can be done in
small increments, as XP demands. I shall return to this at the end of the talk.

1.1.4 The XP Legacy Problem
XP needs refactoring. Refactoring needs a means of showing that a change is (or
is not) behaviour-preserving. The refactoring browser has a strong means:
provable formal equivalence. XP uses a weaker one; if my tests don’t break then
the behaviour I care about has been preserved. Key to XP’s viability is that test-
driven development also supports refactoring; the tests that drive development
of a feature go on revealing when a refactoring breaks that feature.

When XP is introduced to a large existing system, this synergy is lost. Writing
tests for the legacy is a serious and demotivating problem. The original coders
are often long gone, leaving the would-be XPer to try and work out what the
development tests should have been. Without such tests, however, refactoring is
constrained to stay within the area of new XP-style development or else be
unsafe.

This would be a problem in any context but I think it’s especially important for
Smalltalk. In the lean years of Java-hype, a lot of Smalltalkers survived in
legacy systems; systems that management decreed were to be replaced but
which were just too complex to rewrite in a more fashionable but less productive
language and too vital to discard. These systems need XP.

1.1.5 Getting a Handle on Legacy
In trying to solve this problem for our system, Andrew and I decided to exploit
certain features it had, features we suspect it shares with other such survivors.
Firstly, it was of course tested - in good old-fashioned waterfall style by
integration testers at the back-end of the development process. Thus we could
always feel reasonably sure that the behaviour exhibited by the previous release
Solving the XP Legacy Problem with (extreme) Meta-Programming

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
Solving the XP Legacy Problem with (Extreme) Meta-Programming 18
was acceptable. What we couldn’t do was have the integration testers rerun their
effort-intensive process every time we changed a line of code in the upcoming
development stream.

A second feature was that a fairly small subset of the total behaviour was
deliberately changed in each 3-month release; a majority of our hundreds of
supported products did not have changes requested against a given release.
Unfortunately, the integration testers still had to retest all of it, lest we had
accidentally altered something.

The third feature was that, considered very abstractly, the system’s function was
to enforce complex business logic between multiple users’ editing and viewing
of product data on the one hand, and the database’ acceptance of valid data on
the other. Thus products went through a sequence of generally comparable
states at which the system’s status in regard to them was adequately captured in
smaller subsystems, such as
• the actual values held in the UI widgets
• the actual model objects saved to the database
• the business logic validation objects raised
These items were not meaningful as individual objects but they did provide
pointers into object graphs which adequately expressed the outcome of
operations. We saw them as narrow channels through which the system’s
behaviour momentarily flowed, conveniently built from a finite set of widgets
and relationships. (Commercial UI builders usually have a very finite set of
widgets and relationships, and while the validation and database models were
our own utilities, they shared this feature.)

1.1.6 Our Approach: Fundamentals
Putting all this together, Andrew and I decided to try out an additional definition
for what an XP refactoring could be. Let the behaviour whose change we want
to detect be represented by the network of objects it creates from a root in some
appropriate subsystem (the UI, the validation logic, whatever). Create basic
tests that capture these networks after exercising a given product to a given state.
Use appropriately-truncated deep comparison to verify whether tests run before
and after a refactor captured the same networks. Simple.

Of course, there were a few small details to sort out. :-)

1.1.7 Obtaining Tests to Compare
The work to implement this fell into three parts:
• creating a suite of basic tests
• creating a test browser framework to run them and their deep comparisons
• creating the deep comparison framework

The first of these was the most straightforward. We defined basic tests to
exercise a scenario (i.e. move reused or newly-created product to given state)
and capture a given network graph.
XMP/meta-test/pres/0005/1.0

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
19 Solving the XP Legacy Problem with (Extreme) Meta-Programming
Product type data and product rules are stored in what our system calls standing
data, populating a smaller number of templates, themselves pluggable. (This is
an example of another meaning sometimes given to meta-programming but I
call it meta-data, not meta-programming, myself.) Thus it was most natural for
us to create tests for each product by giving the basic test classes key instVars,
(and the behaviour of copying these when their instances were rerun or
debugged; a behaviour not in the SUnitBrowser which has no concept of tests
having key instVars). We could then create tests for all products by creating
instances of our chosen generic test populated from our meta-data. We found
this a flexible and cost effective method but arguably it is a departure from the
original SUnit philosophy, a point I’ll discuss later.

Lots of reusable product instance data existed in the database along with generic
methods to display it. This data we could reuse, in the form of entire reused
products, or as values to populate new clients and products by deep copy-replace
at the model or view layer. We also instrumented each model class to offer
example instances that partitioned its type, letting us create new products and
jitter existing products. Note that these new products did not have to be valid in
terms of business logic; testing whether a refactor changed the handling of
invalid product submissions is at least as valuable.

The only essential basic test assertions are those that check the chosen state was
reached before network graph capture. We added such others as we knew were
valid and had time for. (Arguably, as time passes, much that is now checked by
deep comparison may be refactored to specific assertions in product tests as
debugging test failures teaches developers what the legacy needs.) These
assertions run, the test then captures an appropriately-deep copy of its narrow
subsystem root’s graph. For example, validation logic (most used to date) also
copies any model layer objects that have errors. View layer roots capture
editable widgets and all that connect them but, except for widget values, ignore
the model layer.

1.1.8 Test Browser Framework
The subclassing of the SUnit and SUnitBrowser frameworks to get what we
wanted was reasonably straightforward. The classes in our
ComparisonTestCase sub-hierarchy run various flavours of deep comparison
assertions between the two tests that each comparison test instance holds. Our
test browser (which we made packagable since our release process requires
some packaged use of it, done by loading an altered version of SUnitBrowser’s
superclass) holds multiple instances of TestResult and/or ComparisonResult,
viewing one at a time. I’ll describe the process verbally and show a brief demo
later in the talk.
• Open the browser on your chosen suite of basic tests.
• In your pre-refactor image, run some basic tests to capture a baseline of run

test instances. Copies of the tests you select will be run and added to the
current TestResult (which it is advisable to name appropriately so you can
recognise it later). At this point the browser has few differences from the
standard one; you can run tests you don’t intend to compare, rerun tests, etc.
Solving the XP Legacy Problem with (extreme) Meta-Programming

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
Solving the XP Legacy Problem with (Extreme) Meta-Programming 20
• Once the pre-refactor result is as full of tests as you wish, effect your refactor
(more on that in a minute) and request a new result with an appropriate
name. (For example, if your refactor’s development test were called
testAnnuityCanHaveMultipleGrantees then your test results might be called
AnnuityHasSingleGrantee and AnnuityHasMultipleGrantees, or they might
be called Stream-P17 and Stream-P17a, or by the dates on which they were
started, or whatever best helps you recognise them.) Run the tests you want
to compare again; their run copies will now populate your new result. As
before, you can run other tests as well.

• Request a comparison result for the two. Running a selected test now runs a
copy of the ComparisonResult’s comparison test on the two run copies of
the selected test being held in the two results being compared, and puts the
result in the ComparisonResult.

You can continue the process, creating further results and comparing tests run
in your current state with the original tests, with the most recent tests, whatever.

1.1.9 Test results in the Test Browser
When viewing a standard TestResult, results mean what they usually do: the
colour shows which of the three possible outcomes occurred. When viewing a
ComparisonResult:
• Pass (green) means both tests had the same outcome (Pass, Fail or Error) and

they satisfied the comparison test’s deep comparison assertions.
• Fail (amber) means both tests had the same outcome but they did not satisfy

the comparison test’s assertions
• Error (red) means the tests did not have the same outcome (e.g. one passed

and the other errored). The comparison test assertions are not performed in
this case as they could be met only by misleading accident.

I spoke earlier of ‘effecting the refactoring’ between distinct test result runs. The
browser supports dumping serialized test results to a file and reloading them into
compatible browsers in other images. Comparison can also be done within the
same image as ran the tests that populated the pre-refactoring result: run the tests
and then either make the change, or load a configuration map that has it. (For
example, I have sometimes maintained a developer and a comparison image,
regularly releasing my current state into my developer map in the developer
image, then (re)loading that map in my comparison image and re-running my
tests.) When comparing intra-image, the deep copy that is effected by serialized
dumping has to be done explicitly, so we routinely set up the tests to do it
anyway.

1.2 Meta-Programming Frameworks
We needed deep comparison, deep copy and deep copy-replace for the main
task, with reference tracing for debugging (especially, debugging the dumping
of test results). We found few examples of public domain deep-graph-walking
frameworks and none for deep comparison or copy-replace. I’d be delighted to
learn that we were not looking hard enough and there are dozens; that’s one of
my motives for giving this talk. Meanwhile, I benefited from Paul Baumann’s
deep copy framework (and article [1]) and from the Refactoring Browser’s
ReferenceFinder . Hence I wrote deep comparison and deep copy-replace
frameworks, and adapted deep copy and reference tracing to our needs.
XMP/meta-test/pres/0005/1.0

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
21 Solving the XP Legacy Problem with (Extreme) Meta-Programming
1.2.1 Base Deep Comparison Framework
I developed deep comparison test-first in standard XP fashion. Also in standard
if non-ideal fashion, subsequent practical use revealed omissions in my initial
tests and assertions. The main issues that arose were two.
• firstly, collections require much subtler handling in deep comparison than in

deep copy or reference tracing; backtracking and comparison order issues
took plenty of fixing

• secondly, we needed all our deep-walking strategies to be both more
customisable and customisable from more contexts.

The most basic part of the framework is a comparison strategy paired with
methods whereby the objects being compared invoke it. Structural comparison
comes first; are the two objects sufficiently alike to make detailed comparison
safe and sensible? Content comparison, unless overridden in specific classes,
asks the strategy both what to compare and how to compare. A third method (not
on slide) truncates comparison.

The comparison strategy’s own most basic job is shown in the (simplified) code
snippet; to keep a dictionary of what has been or is being matched to what, and
to use that when the same node in the graph is encountered again.

1.2.2 Customisable Deep Comparison Framework
There are two ways to customise comparison.
• The first way is by overriding the basic methods that objects invoke in more

specialized classes and in a hierarchy of layers. (Each layer calls the one
below in class Object if it does not encounter an override.)
— Lowest above the Basic Layer is the Vendor Layer, where vendor-

specific classes, singletons and other special values are handled, etc. (So
far we have layers for VW and VA.)

— This is called by the General Layer, where default choices for collection
order comparison, immediate-to-non-immediate comparison and
acceptable equivalents to nil are set.

— Above these, whatever layers a specific application may require call the
general layer (or a lower application layer). We’ve written two distinct
application layers for our system to date, one for the legacy testing I’m
describing and one to support testing changes to our database and its
access protocols. Deep comparison was a particularly convenient way to
test the latter since by definition all object graphs produced by all
operations on the Smalltalk side were required to be exactly the same
under these changes.

• The above applies to every comparison. Both while developing the right
comparisons for the system layer to use in general and when a given
comparison applies to only one or a few tests, we needed means of
customising that applies per comparison call. I provided three ways of doing
this.
— Firstly, blocks set on strategy instance creation couple the structure,

content and truncation methods to the strategy. Thus the caller can
Solving the XP Legacy Problem with (extreme) Meta-Programming

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
Solving the XP Legacy Problem with (Extreme) Meta-Programming 22
choose which layer to use and wrap the calls with local handling or
alternates if they desire.

— Secondly, a strategy can be set to ignore given instVars. The relevant
indices are recomputed on each root call so changes to class shapes and
subclasses hierarchies are either handled or (if they affect the instVar
names) caught.

— Thirdly, a strategy can be set to ignore instances or handle them in
particular ways by pre-populating its dictionary. It can also be reused; its
dictionary can be manipulated, e.g. to ignore a difference found, and
then the comparison rerun.

1.2.3 Tools (that helped us meta-program)
We found dynamic type recovery a useful way to get a first cut on what classes
to override in the system layer. In VA, we found SmallTyper a very useful tool
for this (once we realized that some combinations of partial type recovery were
incompatible, a fact the manual forgot to mention; we now routinely recover all
types for any chosen class). We would instrument our system classes of interest,
run some tests, examine the generalized types of their instvars and so get a first
approximation to which classes might benefit from system-layer comparison
overrides. (In VW, the equivalent tool is the Analysis Browser. I’m interested
in knowing whether other dialects have similar tools.)

Another utility we used was the dumper/loader. This does graph-walking too, of
course. There were two minor bugbears.
• Firstly, whereas all our strategy classes used the same protocol for overrides,

the dumper uses its own protocol. Almost invariably, every strategy being
used in a given context wants to ignore, handle specially or handle generally
the same instVars in the same, or analogous, ways. It was tedious to translate
the code used for all our strategies into the different protocol the dumper
requires. (Sometimes we didn’t bother but used hacks, e.g. shutting down
the product’s view layer while dumping.) I have thought of writing a custom
refactoring for it or else writing wrappers that map my protocols; perhaps I
will get around to one of these sometime.

• Secondly, the VA dumper, being implemented with primitives, was much
harder to debug than ours. Doubtless it ran faster than if it had not been, but
that was not an issue for our usage. I would have welcomed a non-primitive
setting. Our most frequent use of ConstrainedReferenceFinder was to track
down the causes of dumper errors. If there’s some obvious way round this,
I’d be glad to learn it. I’d also be interested to know how other dialects’
dumpers compare on these issues.

Something we would have liked, though its absence hasn’t bitten us yet, is RB
awareness of our meta-protocol. It would be good, when renaming an instVar,
to be at least warned of strategy customisations that refer to it, and better to have
them refactored along with the rest. I may look into this. Custom refactorings to
map between the various ways of customising a comparison would also be nice.
XMP/meta-test/pres/0005/1.0

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
23 Solving the XP Legacy Problem with (Extreme) Meta-Programming
These tools specifically helped us meta-program. Of course we also used the RB
incessantly, plus method wrappers (about which I’d like to talk to anyone who
understands how the VA packager handles CompiledMethods), Greg’s quality
control tools (he has them invoking Smalllint as well - we requested it - and I’ve
learned not to ignore the ‘Guard clauses’ warning), and others.

1.3 Demo
See the slides.

1.4 Discussion: Value of this Work
My main reason for giving this talk is that I want to get a feel for the value of
this work, if it has any. Tell me your opinion now, catch me over dinner or email
me as suits you.

1.4.1 Future Directions
Firstly, what is its value in introducing XP to Smalltalk legacy? I gave my
reasons for thinking the Smalltalk legacy issue important near the start of this
talk. Do people agree? And if so, is this technique generally viable? If there is
sufficient feeling that it is, there are some things that can be put into the public
domain on various timescales. I’d be happy to provide a public domain version
of the Test Browser in time for this summer’s Camp Smalltalk to align with the
latest SUnit, port to other dialects or whatever. (And of course, I’d be delighted
to provide consultancy on applying this technique to other systems.)

(A secondary issue in this is what do people think about key instVars for
TestCases. Is that a legitimate development of SUnit? If not, what should we do
instead - generate test case code from our standing data? This touches on SUnit
issues that themselves need resolving; whether the test instance itself or a copy
of it is executed in run mode and in debug mode differs between basic SUnit and
SUnitBrowser. Resources are also differently handled in the two cases.)

Secondly, what is the value of this work in particular and meta-programming in
general to Smalltalk? I’ve given my reasons for thinking that meta-
programming frameworks, provided they allow easy program-level overriding
and instance-level customisation, should be a key smalltalk enabler. Do people
agree? I feel that meta-programming frameworks have a lot in common - quite
enough to make it worth thinking of common core implementation and protocol.
For example, I found it very straightforward to add my customisation protocol
and implementation to a subclass of the Refactoring Browser’s
ReferenceFinder. So, would anyone use a common framework or protocol?
Does one already exist? If I sit down to write ‘Smalltalk Best Practice Meta-
Patterns’, would there be any co-authors to offer examples of patterns or, better
still, implementations? Has the book already been written; can I buy it instead
of writing it? Questions and comments, please.

1.5 Other Remarks (no slides for these)
These are untried ideas that arose while I was doing this work.
Solving the XP Legacy Problem with (extreme) Meta-Programming

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
Solving the XP Legacy Problem with (Extreme) Meta-Programming 24
1.5.1 Using Deep Comparison to Refine our definition of ‘Behaviour’
A variant approach we have not yet tried would be to deepCopy from the narrow
subsystem root before running the test, then after running, run a comparison and
note all the differences within a given depth. This information could be passed
with the test and the comparison between the two tests run only on these
differences i.e. on the objects altered by running the test (of course, a compare
general start state test would also be needed). It is possible this would
significantly reduce the amount of comparison customisation needed and/or
focus in on the actual behaviour elicited by the test.

1.5.2 Other Uses of the Test Browser
No rule limits using our test browser to run only deep comparisons. Are there
any other kinds of secondary assertions on single, double or multiple tests that
would be worth running? Could it be developed into a test composition
browser?

1.5.3 Comparison Framework Optimisation
Much Prolog compiler work addresses backtracking optimisation. My
framework is unoptimised at present, my hasty attempts to apply these ideas
crudely to my framework having met errors. Can anyone advise, e.g. how does
SOUL and other Prolog-in-Smalltalk work handle backtracking?

1.5.4 ‘Move to Component’ Refactoring
Frequently, especially when developing complex test suites, I found myself
needing to refactor a method from the class where it was defined to a
parameter’s (or instVar’s) class, e.g.
ProductTestCase>>copyClient: aClient

“Code that after successive refactors now has little
or nothing to do with ProductTestCase”

into
Client>>copy OR Client>>copyInTest: aTestCase

“‘aClient’ replaced by ‘self’, ‘self’ replaced by
‘aTestCase’, and perhaps any directly-accessed instVars of
aTestCase replaced by accessors”

with the calls being appropriately rewritten. This often happens when utility
methods first defined on the test case are refactored into chunks some of which
belong on the classes being tested. Sometimes, as the method develops, the need
to dispatch on the parameter’s subclass makes it essential to move them there.

The relevant refactoring is ‘Move to Component’ in the RB. I mention this in
case anyone else is as slow as I to realise this.

1.6 Issues
Our tests have key instVars. I’ve had to overriding methods in SUnitBrowser
and alter TestCase>>debugUsing: in SUnit to achieve this. I propose that
systems that use meta-data will naturally want to write test classes with key
instVars so that their instances can be populated from that meta-data. Any
agreement or argument?
XMP/meta-test/pres/0005/1.0

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
25 Solving the XP Legacy Problem with (Extreme) Meta-Programming
1.7 Platforms
Almost all the comparison framework is dialect neutral. A vendor layer for each
dialect is essential but fairly straightforward to write from another dialect’s
example. Layers for VW and VA exist.

The browser currently runs only in VA. A straightforward set of widget tweaks
should port it to any dialect that already has SUnitBrowser. Part of any port to a
dialect that used another SUnit UI would be making the tests in that UI’s test
suite distinct from the (copied) tests actually run by it.
Solving the XP Legacy Problem with (extreme) Meta-Programming

Presented at Smalltalk Solutions 2002

