
What we are doing? Component-based programming Scl Exil Summarize

A Smalltalk implementation of EXIL, a Component-based
Programming Language

Petr Špaček
in cooperation with

Christophe Dony, Chouki Tibermacine and Luc Fabresse

LIRMM,
University of Montpellier 2
petr.spacek@lirmm.fr

23rd of August, 2011



What we are doing? Component-based programming Scl Exil Summarize

WHAT WE ARE DOING? - MOTIVATION

Compiler

main

ICompile

cVG : CodeGenerator

main ast

ICodeGen

IAST cParser : Parser

ast

scanner

ITokenScanner

cScanner : Scanner

tokens

source

ICharacterStream
cSRC : Source

in access

ISourceManager

public class CParser implements IAST, BindingController {
  private ITokenStream scanner;
  
  Token currentToken;

  // Fractal BindingController implementation
  // configuration concern
  public String[] listFc () { return new String[] {"scanner"}; }
  public Object lookupFc (String itfName) {
    if (itfName.equals("scanner")) {return scanner;}
    else return null;
  }
  public void bindFc(String itfName, Object itfValue) {
    if (itfName.equals("scanner") { scanner = (ITokenStream)itfValue; }
  }
  public void unbindFc(String itfName){
    if (itfName.equals("scanner") { scanner = null; }
  }
  // functional concern

  public AST-Node getRoot {
    return expression();
  }
.......
  }

&

I Combine a modeling (architecture description) language
and a programming language



What we are doing? Component-based programming Scl Exil Summarize

WHAT WE ARE DOING? - APPROACH

I Our approach: components
I Applying component-paradigm into a programming

language
I With such a language:

I design components - design for reuse
I design applications using components - design by reuse

“A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A

software component can be deployed independently and is subject to
composition by third parties”

Szyperski C. Component software: beyond object-oriented programming. 2nd ed., Reading, MA: Addison-Wesley;
2002



What we are doing? Component-based programming Scl Exil Summarize

IN GENERAL

ExilHelloerApp

helloer

service hello()

cPrinter : ExilTranscriptPrinter

printer

service print(string)
service clear()

cHelloer : ExilHelloer
helloer

printer

service sayHello()

service hello() {
  cHellloer sayHello.
}

service sayHello() {
  printer print: #('Hello World').
}

service print(s) {
Transcript show: s; cr.

}

service clear() {
Transcript clear.

}

I Explicit external contract with an environment
I requirements - what is demanded from the environment
I provisions - what is offered to the environment

I Explicit architecture



What we are doing? Component-based programming Scl Exil Summarize

SCL - OVERVIEW 1

I Scl - Simple Component-oriented language
I Invented by Luc Fabresse (presented in ESUG’06)
I EXIL extends Scl towards to a modeling language

!"#$%&'$()*+!"#$+,"#$-)$$.)*

%&'"()*+$+/"#$012345$)60-)$$.7.*$(/8

*",-.*"/0)*'1$+,!,9*':;)*8<

2*)3./"/0)*'1$+=!,-)$$.)*0>,!,63?-)$$.+88@



What we are doing? Component-based programming Scl Exil Summarize

SCL - OVERVIEW 2

I Component
I Black box
I Ports described by interfaces
I Provides and requires services

I Port
I Unidirectional interaction point
I Plug

I Service
I Functionality
I Like a method or a set of methods

I Interface
I Describes the valid uses of a port
I Service signatures sets, protocols, contracts, ...



What we are doing? Component-based programming Scl Exil Summarize

EXIL- OVERVIEW

I Component = instance of
descriptor

I Reusable interfaces
I Ports

I described by list of services
or by interfaces

I roles
I provided
I required

I Connection
I Internal components



What we are doing? Component-based programming Scl Exil Summarize

EXIL- NEW FEATURES

to support modeling
I Explicit architecture

I extracting architecture from
the code

I Inheritance
I sub-descriptors: a descriptor

may extend an another
descriptor

I extension and specialization
of:

I Ports
I Services
I Internal components &

Connections



What we are doing? Component-based programming Scl Exil Summarize

EXIL- INHERITANCE

problem with additional requirements & substitution

Person

person

student

memory

accommodation

friend

IPerson

IStudent

IMemory

IAccommodation

IPerson

heart->Heart

pump muscles

IPump
IControll

brain->Brain

controller

memory

IControll

IMemory

def service1
def service2

Brain

controller

memory

IControll

IMemory

OverclockedBrain

cafe

ICoffein

Person

person

student

memory

accommodation

friend

IPerson

IStudent

IMemory

IAccommodation

IPerson

heart->Heart

pump muscles

IPump
IControll

brain->Brain

controller

memory

IControll

IMemory

def service1
def service2

cafe

ICoffein



What we are doing? Component-based programming Scl Exil Summarize

EXIL- IMPLEMENTATION

I EXIL parser uses PetitParser framework and PetitSmalltalk
parser

I Compiler - visitor pattern
I Core

I ExilComponent class
I ExilInterface class

I image can be downloaded here:
http://www.lirmm.fr/˜spacek/exil (source codes -
SqueakSource download is coming)



What we are doing? Component-based programming Scl Exil Summarize

EXIL- LIVE EXAMPLE

ExilHelloerApp

helloer

service hello()

cPrinter : ExilTranscriptPrinter

printer

service print(string)
service clear()

cHelloer : ExilHelloer
helloer

printer

service sayHello()

service hello() {
  cHellloer sayHello.
}

service sayHello() {
  printer print: #('Hello World').
}

service print(s) {
Transcript show: s; cr.

}

service clear() {
Transcript clear.

}



What we are doing? Component-based programming Scl Exil Summarize

EXIL- FUTURE WORK

I Reflexivity level - goal = write model analysis and
transformations in EXIL

I Architecture constrains
I Visual development



What we are doing? Component-based programming Scl Exil Summarize

SUMMARIZE

EXIL

I is a component-oriented language
I which merges modeling and programming
I and brings component-paradigm closer to the Smalltalk

users

Thank you



What we are doing? Component-based programming Scl Exil Summarize

SUMMARIZE

EXIL

I is a component-oriented language
I which merges modeling and programming
I and brings component-paradigm closer to the Smalltalk

users

Thank you


	What we are doing?
	Motivation
	Approach

	Component-based programming
	Component-based programming

	Scl
	Overview 1
	Overview 2

	Exil
	Overview
	New Features
	Inheritance
	Implementation
	Live example
	Future work

	Summarize

