
IWST 2011!

"#$%&&'()*+!$,!-.&!/#'!&'(0$)!$,!!
-.&!1)-&#)20$)23!4$#5+.$6!$)!78233-235!

9&%.)3*(&+!
1)!%$):;)%0$)!<(-.!-.&!!

=>-.!1)-&#)20$)23!78233-235!?$()-!@$),&#&)%&!

A'()B;#*.C!2;*;+-!DE==!

IWST 2011 Program Commitee

ii

IWST 2011 Program Commitee

Program Committee

Loic Lagadec (chair) LabSTICC UMR 3192 / MOCS - Universite de Bretagne Occiden-
tale

Alain Plantec (chair) Lisyc - Universite de Bretagne Occidentale
Gabriela Arevalo Facultad de Ingenieria - Universidad Austral
Alexandre Bergel University of Chile
Johan Brichau Inceptive
Damien Cassou INRIA / University of Bordeaux
Jordi Delgado Universitat Politècnica de Catalunya
Markus Denker INRIA Lille
Johan Fabry PLEIAD lab - Department of Computer Science (DCC)

- University of Chile
Lukas Renggli Google Zurich
Hernan Wilkinson 10 Pines

iii

IWST 2011 Table of Contents

iv

IWST 2011 Table of Contents

Table of Contents

Clustered Serialization with Fuel . 7
Martı́n Dias, Mariano Martinez Peck, Stéphane Ducasse and Gabriela Arévalo

Using First-class Contexts to realize Dynamic Software Updates . 21
Erwann Wernli, David Gurtner and Oscar Nierstrasz

A Smalltalk implementation of Exil, a Component-based Programming Language 33
Petr Spacek, Christophe Dony, Chouki Tibermacine and Luc Fabresse

Klotz: An Agile 3D Visualization Engine . 39
Ricardo Jacas and Alexandre Bergel

A programming environment supporting a prototype-based introduction to OOP 45
Carla Griggio, Germán Leiva, Guillermo Polito, Nicolás Passerini and Gisela Decuzzi

Memoization Aspects: a Case Study . 51
Santiago Vidal, Claudia Marcos, Alexandre Bergel and Gabriela Arévalo

MDE-based FPGA Physical Design. Fast Model-Driven Prototyping with Smalltalk 61
Ciprian Teodorov and Loic Lagadec

Ghost: A Uniform, Light-weight and Stratified Proxy Model and Implementation 75
Mariano Martinez Peck, Noury Bouraqadi, Marcus Denker, Stéphane Ducasse and Luc Fabresse

Challenges to support automated random testing for dynamically typed languages 91
Stéphane Ducasse, Manuel Oriol and Alexandre Bergel

PHANtom: a Modern Aspect Language for Pharo Smalltalk . 97
Johan Fabry and Daniel Galdames

Talents: Dynamically Composable Units of Reuse . 109
Jorge Ressia, Tudor Girba, Oscar Nierstrasz, Fabrizio Perin and Lukas Renggli

Towards Structural Decomposition of Reflection with Mirrors . 119
Nick Papoulias, Noury Bouraqadi, Marcus Denker, Stephane Ducasse and Luc Fabresse

v

IWST 2011 Selected papers

vi

Clustered Serialization with Fuel

Martín Dias13 Mariano Martinez Peck12 Stéphane Ducasse1 Gabriela Arévalo45

1RMoD Project-Team, Inria Lille–Nord Europe / Université de Lille 1
2Ecole des Mines de Douai, 3Universidad de Buenos Aires, 4Universidad Abierta Interamericana 5CONICET

{tinchodias, marianopeck, gabriela.b.arevalo}@gmail.com, stephane.ducasse@inria.fr

Abstract
Serializing object graphs is an important activity since ob-
jects should be stored and reloaded on different environ-
ments. There is a plethora of frameworks to serialize ob-
jects based on recursive parsing of the object graphs. How-
ever such approaches are often too slow. Most approaches
are limited in their provided features. For example, sev-
eral serializers do not support class shape changes, global
references, transient references or hooks to execute some-
thing before or after being stored or loaded. Moreover, to be
faster, some serializers are not written taking into account
the object-oriented paradigm and they are sometimes even
implemented in the Virtual Machine hampering code porta-
bility. VM-based serializers such as ImageSegment are dif-
ficult to understand, maintain, and fix. For the final user, it
means a serializer which is difficult to customize, adapt or
extend to his own needs.

In this paper we present a general purpose object graph
serializer based on a pickling format and algorithm. We im-
plement and validate this approach in the Pharo Smalltalk
environment. We demonstrate that we can build a really fast
serializer without specific VM support, with a clean object-
oriented design, and providing most possible required fea-
tures for a serializer. We show that our approach is faster
that traditional serializers and compare favorably with Im-
ageSegment as soon as serialized objects are not in isolation.

Keywords Object-Oriented Programming and Design »

Serializer » Object Graphs » Pickle Format » Smalltalk

1. Introduction
In the Object-Oriented Programming paradigm, since ob-
jects point to other objects, the runtime memory is an ob-
ject graph. This graph of objects lives while the system is
running and dies when the system is shutdown. However,
sometimes it is necessary, for example, to backup a graph of

[Copyright notice will appear here once ’preprint’ option is removed.]

objects into a non volatile memory to load it back when nec-
essary, or to export it so that the objects can be loaded in a
different system. The same happens when doing migrations
or when communicating with different systems.

Approaches and tools to export object graphs are needed.
An approach must scale to large object graphs as well as
be efficient. However, most of the existing solutions do not
solve this last issue properly. This is usually because there is
a trade-off between speed and other quality attributes such as
readability/independence from the encoding. For example,
exporting to XML [17] or JSON [9] is more readable than
exporting to a binary format, since one can open it and edit
it with any text editor. But a good binary format is faster
than a text based serializer when reading and writing. Some
serializers like pickle [14] in Python or Google Protocol
Buffers [15] that let one choose between text and binary
representation. Five main points shape the space of object
serializers

1. Serializer speed is an important aspect since it enables
more extreme scenarios such as saving objects to disk
and loading them only on demand at the exact moment
of their execution [3, 10].

2. Serializer portability and customization. Since many ap-
proaches are often too slow, Breg and Polychronopou-
los advocate that object serialization should be done at
the virtual machine level [4]. However, this implies non
portability of the virtual machine and difficult mainte-
nance. In addition, moving behavior to the VM level usu-
ally means that the serializer is not easy to customize or
extend.

3. Another usual problem is class changes. For example, the
class of a saved object can be changed after the object is
saved. At writing time, the serializer should store all the
necessary information related to class shape to deal with
these changes. At load time, objects must be updated in
case it is required. Many object serializers are limited
regarding this aspect. For example, the Java Serializer
[8] supports adding or removing a method or a field, but
does not support the modification of an object’s hierarchy
nor the removing of the implementation of the Serializable
interface.

4. Loading policies. Ungar [18] claims that the most impor-
tant and complicated problem is not to detect the sub-

1 2011/8/16

graph to export, but to detect the implicit information of
the subgraph that is necessary to correctly load back the
exported subgraph in another system. Examples of such
information are (1) whether to export an actual value or
a counterfactual initial value, or (2) whether to create a
new object in the new system or to refer to an existing
one. In addition, it may be necessary that certain objects
run some specific code once they are loaded in a new sys-
tem.

5. Uniformity of the solution. Serializers are often limited
to certain kind of objects they save. For example Msg-
Pack only serializes booleans, integers, floats, strings, ar-
rays and dictionaries. Now in dynamic programming lan-
guages e.g., Smalltalk, methods and classes as first class
objects – user’s code is represented as objects. Similarly
the execution stack and closures are objects. The natural
question is if we can use serializers as code management
system underlying mechanism. VisualWorks Smalltalk
introduced a pickle format to save and load code called
Parcels [12]. However, such infrastructure is more suit-
able for managing code than a general purpose object
graph serializer.

This paper presents Fuel, an open-source general purpose
framework to serialize and deserialize object graphs using
a pickle format which clusters similar objects. We show in
detailed benchmarks that we have the best performance in
most of the scenarios we are interested in. For example, with
a large binary tree as sample, Fuel is 16 times faster load-
ing than its competitor SmartRefStream, and 7 times faster
writing. We have implemented and validated this approach
in the Pharo Smalltalk Environment [2].

The pickle format presented in this paper is similar to the
one of Parcels [12]. However, Fuel is not focused in code
loading and is highly customizable to cope with different
objects. In addition, this article demonstrates the speed im-
provements gained in comparison to traditional approaches.
We demonstrate that we can build a fast serializer without
specific VM support, with a clean object-oriented design,
and providing most possible required features for a serial-
izer.

The main contributions of the paper are:

1. Description of our pickle format and algorithm.
2. Description of the key implementation points.
3. Evaluation of the speed characteristics.
4. Comparison of speed improvements with other serializ-

ers.

The remainder of the paper is structured as follows: Sec-
tion 2 provides a small glossary for the terms we use in the
paper. Section 3 enumerates common uses of serialization.
Features that serializers should support are stressed in Sec-
tion 4. In Section 5 we present our solution and an exam-
ple of a simple serialization which illustrates the pickling
format. Fuel key characteristics are explained in details in
Section 6. A large amount of benchmarks are provided in

Section 8. Finally, we discuss related work in Section 9 and
we conclude in Section 10.

2. Glossary
To avoid confusion, we define a glossary of terms used in
this paper.

Serializing. It is the process of converting the whole ob-
ject graph into a sequence of bytes. We consider the words
pickling and marshalling as synonyms.

Materializing. It is the inverse process of serializing, i.e.,
regenerate the object graph from a sequence of byes. We
consider the words deserialize, unmarshalling and unpick-
ling as synonyms.

Object Graph Serialization. We understand the same for
object serialization, object graph serialization and object
subgraph serialization. An object can be seen as a subgraph
because of its pointers to other objects. At the same time,
everything is a subgraph if we consider the whole memory
as a large graph.

Serializer. We talk about serializer as a tool performing
both operations: serializing and materializing.

3. Serializer Possible Uses
We will mention some possible uses for an object serializer.

Persistency and object swapping. Object serializers can
be used directly as a light persistency mechanism. The user
can serialize a subgraph and write it to disk or secondary
memory [11]. After, when needed, it can be materialized
back into primary memory [3, 10]. This approach does not
cover all the functionalities that a database provides but
it can be a good enough solution for small and medium
size applications. Besides this, databases normally need to
serialize objects to write them to disk [5].

Remote Objects. In any case of remote objects, e.g., re-
mote method invocation and distributed systems [1, 6, 19],
objects need to be passed around the network. Therefore,
objects need to be serialized before sending them by the net-
work and materialized when they arrive to destination.

Web Frameworks. Today’s web applications need to store
state in the HTTP sessions and move information between
the client and the server. To achieve that web frameworks
usually use a serializer.

Version Control System. Some dynamic programming
languages e.g., Smalltalk consider classes and methods
as first-class objects. Hence, a version control system for
Smalltalk deals directly with objects, not files as in other
programming languages. In this case, such tool needs to
serialize and materialize objects. This is the main purpose
behind Parcels [12].

Loading methods without compilation. Since classes and
methods are objects, a good serializer should be enable the

2 2011/8/16

loading of code without the presence of a compiler. This en-
able binary deployment, minimal kernel, and faster loading
time.

4. Serializer Features
In this section we enumerate elements to analyze a serializer.
We start with more abstract concerns and then follow with
more concrete challenges. We use these criteria to discuss
and evaluate our solution in Section 7.

4.1 Serializer concerns
Below we list general aspects to analyze on a serializer.

Performance. In almost every software component, time
and space efficiency is a wish or sometimes even a require-
ment. It does become a need when the serialization or ma-
terialization is frequent or when working with large graphs.
We can measure both speed and memory usage, either se-
rializing and materializing, as well as the size of the result
stream. We should also take into account the initialization
time, which is important when doing frequent small serial-
izations.

Completeness. It refers to what kind of objects can the
serializer handle. It is clear that it does not make sense to
transport instances of some classes, like FileStream or Socket.
Nevertheless, serializers often have limitations that restrict
use cases. For example, an apparently simple object like a
SortedCollection usually represents a problematic graph to
store: it references a block closure which refers to a method
context, and most serializers does not support transporting
them, often due to portability reasons.

Besides, in comparison with other popular environments,
the object graph that one can serialize in Smalltalk is much
more complex. This is because it reifies elements like the
metalevel model, methods, block closures, and even the ex-
ecution stack. Normally there are two approaches: for code
sharing, and for plain objects sharing.

Portability. There are two aspects related to portability.
One is related to the ability to use the same serializer in
different dialects of the same language. For example, in
Smalltalk one would like to use the same, or at least almost
the same, code for different dialects. The second aspect is
related to the ability of be able to materialize in a dialect or
language a stream which was serialized in another language.
This aspect brings even more problems and challenges to the
first one.

As every language and environment has its own partic-
ularities, there is a trade-off between portability and com-
pleteness. Float and BlockClosure instances often have incom-
patibility problems.

For example, Action Message Format (AMF), Google
Protocol Buffers, Oracle Coherence*Web, Hessian, are quite
generic and there are implementations in several languages.
In contrast, SmartRefStream in Squeak and Pharo, and
pickle [14] in Python are not designed with this goal in mind.
They just work in the language they were defined.

Abstraction capacity. Although it is always possible to
store an object, concretely serializing its variables, such a
low-level representation, is not acceptable in some cases.
For example, an OrderedCollection can be stored either as its
internal structure or just as its sequence of elements. The
former is better for an accurate reconstruction of the graph.
The second is much more robust in the sense of changes
to the implementation of OrderedCollection. Both alternatives
are valid, depending on the use case.

Security. Materializing from an untrusted stream is a pos-
sible security problem in the image. When loading a graph,
some kind of dangerous object can enter to the environment.
The user may want to control in some way what is being
materialized.

Atomicity. We have this concern expressed in two parts:
for saving and for loading. As we know, the image is full of
mutable objects i.e., that changes their state over the time.
So, while serialization process is running. It is desired that
when serializing such mutable graph it is written an atomic
snapshot of it, and not a potential inconsistent one. On the
other hand, when loading from a broken stream and so it can
not complete its process. In such case, no secondary effects
should affect the environment. For example, there can be an
error in the middle of the materialization which means that
certain objects have been already materialized.

Versatility. Let us assume a class is referenced from the
graph to serialize. Sometimes we may be interested in stor-
ing just the name of the class because we know it will be
present when materializing the graph. However, sometimes
we want to really store the class with full detail, including
its method dictionary, methods, class variables, etc. When
serializing a package, we are interested in a mixture of both:
for external classes, just the name, for the internal ones, full
detail.

This means that given an object graph living in the image,
there is not an unique way of serializing it. A serializer may
offer dynamic or static mechanisms to the user to customize
this behavior.

4.2 Serializer challenges
The following is a list of concrete issues and features we
consider in serializers:

Maintaining identity. When serializing an object we actu-
ally serialize an object graph. However, we usually do not
want to store the whole transitive closure of references of
the object. We know (or we hope) that some objects will be
present when loading, so we want just to store external refer-
ences, i.e., store the necessary information to be able to look
those objects in the environment while materializing.

In Figure 1 we have an example of a method, i.e., a Com-
piledMethod instance and its subgraph of references. Sup-
pose that the idea is to store just the method. We know that
the class and the global binding will be present on loading.
Therefore, we just reference them by encoding their names.

3 2011/8/16

Logger>>begin
Logger>>begin

Transcript show: 'hi!'

#Logger->Logger

#begin

Smalltalk globals

#Transcript-
>Transcript

#show
:

'hi!'

literalAt: 2

literalAt: 1

literalAt: 4
literalAt: 5

literalAt: 3

Figure 1. Serializing a method while maintaining identity
of its referenced classes and globals.

In other words, in this example we want to serialize a
method, maintaining identity of its class, the global Tran-
script, and the symbols. Consequently, when materializing,
the only instances that should be created are the compiled
method and the string. The rest will be looked up in the en-
vironment.

Transient values. Sometimes objects have temporal state
that we do not want to store, and we want an initial value
when loading. A typical case is serializing an object that has
an instance variable with a lazy-initialized value. Suppose
we prefer not to store the actual value. In this sense, declar-
ing a variable as transient is a way of delimiting the graph
to serialize. We are breaking the iteration through that refer-
ence.

There are different levels of transient values:

Instance. When only one particular object is transient. All
objects in the graph that are referencing to such object
will be serialized with a nil in their instance variable that
points to the transient object.

Class. Imagine we can define that a certain class is tran-
sient in which case all its instances are considered tran-
sient.

Instance variable names. This is the most common case.
The user can define that certain instance variables of a
class have to be transient. That means that all instances
of such class will consider those instance variables as
transient.

List of objects. The ability to consider an object to be tran-
sient only if it is found in a specific list of objects. The
user should be able to add and remove elements from that
list.

Cyclic object graphs and duplicates. Since commonly the
object graph to serialize has cycles, it is important to de-

tect them and take care to preserve objects identity. Sup-
porting that means decreasing the performance and increas-
ing the memory usage. This is because each iterated object
in the graph should be temporally collected: it is necessary
to check whether each object has been already processed or
not.

Class shape change tolerance. Often we need to load in-
stances of a class in an environment where its definition has
changed. The expected behavior may be to adapt the old-
shaped instances automatically when possible. We can see
some examples of this in Figure 2. For instance variable po-
sition change, the adaptation is straightforward. For exam-
ple, version v2 of Point changes the order between the in-
stance variables x and y. For the variable addition, an easy
solution is to fill with nil. Version v3 adds instance variable
distanceToZero. If the serializer also lets one to write custom
messages to be sent by the serializer once the materialization
is finished, the user can benefit from this hook to initialize
the new instance variables to something different that nil.

In contrast to the previous examples, for variable renam-
ing, the user must specify what to do. This can be done via
hook methods, or more dynamically, via materialization set-
tings.

x
y

Point (v1)
y
x

Point (v2)
y
x
distanceToZero

Point (v3)
posX
poY
distanceToZero

Point (v4)

Figure 2. Several kinds of class shape changing.

There are even more kinds of changes such as adding,
removing or renaming a method, a class or an instance
variable, changing the superclass, etc. As far as we know,
no serializer fully manage all these kinds of change. Ac-
tually, most of them have a limited number of supported
change types. For example, the Java Serializer [8] supports
the adding and the removing of a method or of a field, but
does not support changing an object’s hierarchy or removing
the implementation of the Serializable interface.

Custom reading. When working with large graphs or
when there is a large number of stored streams, it makes
sense to read the serialized bytes in customized ways, not
necessarily materializing all the objects as we usually do.
For example, if there are methods written in the streams, we
may want to look for references to certain message selec-
tors. Maybe count how many instances of certain class we
have stored. Maybe list the classes or packages defined or
referenced from a stream. Or to extract any kind of statistics
about the stored objects.

Partial loading. In some scenarios, especially when work-
ing with large graphs, it may be necessary to materialize only
a part of the graph from the stream instead of the whole
graph. Therefore, it is a good feature to simply get a sub-
graph with some holes filled with nil. In addition, the tool
could support some kind of lazy loading.

4 2011/8/16

Versioning. The user may need to load an object graph
stored with a different version of the serializer. Usually this
feature allows version checking so that future versions can
detect that a stream was stored using another version, and
act consequently: when possible migrate it, otherwise throw
an error message.

Alternative output format. Textual or binary: serializers
like pickle [14] in Python or Google Protocol Buffers [15] let
the user choose between textual and binary representation.
While developing, we can use the text based one, which is
easy to see, inspect and modify. Then, at production time,
we can switch to the faster binary format.

Alternative stream libraries. Usually, there are several
packages of streams available for the same programming
languages. For example, for Pharo Smalltalk there are
Xtreams, FileSystem, and Nile. A design that supports al-
ternative implementations is desired.

Graphical progress update. Object graphs can be huge
and so, the user has to wait until the process end. Therefore,
it is important to have the possibility to enable this feature
and show graphically the processing of the graph.

5. Fuel
In this section we present Fuel, a new framework to serialize
objects. Fuel is based on the hypothesis that fast loading
is always preferable, even it implies a slower serialization
process. Fuel clusters objects and separates relationships.

5.1 Pickle Formats
Pickle formats are efficient to support transport, marshalling
or serialization of objects [16]. Before going any further we
give a definition of pickle and give an example.

“Pickling is the process of creating a serialized represen-
tation of objects. Pickling defines the serialized form to in-
clude meta information that identifies the type of each object
and the relationships between objects within a stream. Val-
ues and types are serialized with enough information to in-
sure that the equivalent typed object and the objects to which
it refers can be recreated. Unpickling is the complementary
process of recreating objects from the serialized representa-
tion.” (extracted from [16])

5.2 Pickling a rectangle
To present the pickling format and algorithm in an intuitive
way, we show below an example of how Fuel stores a rect-
angle.

In Figure 3 we create a rectangle with two points that de-
fine the origin and the corner. A rectangle is created and then
passed to the serializer as an argument. In this case the rect-
angle is the root of the graph which also includes the points
that the rectangle references. The first step is to analyze the
graph starting from the root. Objects are mapped to clus-
ters following some criteria. In this example, the criteria is
’by class’, but in other cases it is ’is global object’ (it is at
Smalltalk dictionary), or ’is an integer between 0 and 216’.

FLDemo >> serializeSampleRectangleOn: aFileStream

| aRectangle anOrigin aCorner |
anOrigin := 10@20.
aCorner := 30@40.
aRectangle := Rectangle origin: anOrigin corner: aCorner.

(FLSerializer on: aFileStream) serialize: aRectangle.

Figure 3. Code snippet for our example to show how Fuel
serialization works.

Finally, in Figure 4 we can see how the rectangle is stored
in the stream. The graph is encoded in four main sections:
header, vertexes, edges and trailer. The ’Vertexes’ section
collects the instances of the graph. The ’Edges’ section con-
tains indexes to recreate the references of the instances. The
trailer encodes the root: a reference to the rectangle.

Even if the main goal of Fuel is to be fast in materializa-
tion, the benchmarks of Section 6 show that actually Fuel
is fast for both serialization and materialization. In the next
section, there are more details regarding the pickle format
and how the clusters work.

6. Fuel Key Characteristics
In the previous section, we explained the pickle format be-
hind Fuel, but that is not the only key aspect. The following
is a list of important characteristics of Fuel:

Grouping objects in clusters. Tipically serializers do not
group objects. Thus, each object has to encode its type at
serialization and decode it at deserialization. This is not only
an overhead in time but also in space. In addition, each object
may need to fetch its class to recreate the instance.

The purpose of grouping similar objects is to reduce the
overhead on the byte representation that is necessary to en-
code the type of the objects. The idea is that the type is
encoded and decoded only once for all the objects of that
type. Moreoever, if recreation is needed, the operations can
be grouped.

The type of an object is sometimes directly mapped to its
class, but the relation is not always one to one. For example,
if the object being serialized is Transcript, the type that will
be assigned is the one that represents global objects. For
speed reason, we distinguish between positive SmallInteger
and negative one. From a Fuel perspective they are from
different types.

Clusters know how to encode and decode the objects they
group. Clusters are represented in Fuel’s code as classes.
Each cluster is a class, and each of those classes has an
associated unique identifier which is a number. Such ID is
encoded in stream as we saw in Figure 4. It is written only
once, at the begining of a cluster instance. At materialization
time, the cluster ID is read and then the associated cluster is
searched. The materializer then materializes all the objects it
contains.

5 2011/8/16

Edges

Vertexes

Points reference to 10

reference to 20

reference to 30

reference to 40

Rectangles reference to anOrigin

reference to aCorner

Trailer root: reference to aRectangle

Header

clusters: 3

some extra info

version info

Points

className: 'Point'

variables: 'x y'

instances: 2

clusterID:
FixedObjectClusterID

SmallIntegers

instances: 4

10

20

30

40

clusterID:
PositiveSmallIntegerClusterID

Rectangles

className: 'Rectangle'

variables: 'origin corner'

instances: 1

clusterID:
FixedObjectClusterID

Figure 4. A graph example encoded with the pickle format.

Notice that what is associated to objects are cluster in-
stances, not the cluster classes. The ID is unique per cluster.
Some examples:

• PositiveSmallIntegerCluster is for positive instances of
SmallInteger. Its ID is 4. A unique Singleton instance
is used for all the objects grouped to this cluster.

• NegativeSmallIntegerCluster is for negative instances of
SmallInteger. Its ID is 5. Again, it is singleton.

• FloatCluster is for Float instances. Its ID is 6. Again, it is
singleton.

• FixedObjectCluster is the cluster for regular classes with
indexable instance variables and that do not require any
special serialization or materialization. Its ID is 10 and

one instance is created for each class, i.e.,FixedObjectCluster
has an instance variable referencing a class. One instance
is created for Point and one for Rectangle.

If we analyze once again Figure 4, we can see that there is
one instance of PositiveSmallIntegerCluster, and two instances
of FixedObjectCluster, one for each class.

It is important to understand also that it is up to the cluster
to decide what is encoded and decoded. For example, Fixe-
dObjectCluster writes into the stream a reference to the class
whose instances it groups, and then it writes the instance
variable names. In contrast, FloatCluster, PositiveSmallInte-
gerCluster or NegativeSmallIntegerCluster do not store such
information because it is implicit in the cluster implementa-
tion.

In Figure 4 one can see that for small integers, the cluster
directly writes the numbers 10, 20, 30 and 40 in the stream.
However, the cluster for Rectangle and Point do not write
the objects in the stream. This is because such objects are
no more than just references to other objects. Hence, only
their references are written in the ’Edges’ part. In contrast,
there are objects that contain self contained state, i.e., objects
that do not have references to other objects. Examples are
Float, SmallInteger, String, ByteArray, LargePositiveInteger, etc.
In those cases, the cluster associated to them have to write
those values in the stream.

The way to specify custom serialization or materializa-
tion of objects is by creating specific clusters.

Analysis phase. The common approach to serialize a
graph is to traverse it and while doing so to encode the ob-
jects into a stream. Fuel groups similar objects in clusters so
it needs to traverse the graph and associate each object to its
correct cluster. As explained, that fact significantly improves
the materialization performance. Hence, Fuel does not have
one single phase of traverse and writing, but instead two
phases: analysis and writing.

The analysis phase has several responsibilities:

• It takes care of traversing the object graph and it asso-
ciates each object to its cluster. Each cluster has a corre-
sponding list of objects which are added there while they
are analyzed.

• It checks whether an object has already been analyzed or
not. Fuel supports cycles. In addition, this offers to write
an object only once even if it is referenced from several
objects in the graph.

• It gives support for global objects, i.e., objects which
are considered global and should not be written into the
stream but instead put the minimal needed information
to get it back the reference at materialization time. This
is, for example, what is in Smalltalk globals. If there are
objects in the graph referencing the instance Transcript we
do not want to serialize it but instead just put a reference
to it and at materialization get it back. In this case, just
storing the global name is enough. The same happens
with the Smalltalk class pools.

6 2011/8/16

Once the analysis phase is over, the writing follows: it
iterates over every cluster and for every cluster write its
objects.

Stack over recursion. Most of the serializers use a depth-
first traversal mechanism to serialize the object graph. Such
mechanism consists of a simple recursion:

1. Take an object and look it up in a table.
2. If the object is in the table, it means that it has already

been serialized. The, we take a reference from the table
and write it down. If it is not present in the table, it means
that the object has not been serialized and that its contents
need to be written. After that, the object is serialized and
a reference representation is written into the table.

3. While writing the contents, e.g., instance variables of an
object, the serializer can encounter simple objects such
as instances of String, Float, SmallInteger, LargePositiveIn-
teger, ByteArray or complex objects (objects which have
instance variables that reference to other objects). In the
latter case we start over from the first step.

This mechanism can consume too much memory depend-
ing on the graph, e.g., its depth, the memory to hold all the
call stack of the recursion can be too much. In addition, a
Smalltalk dialect may limit the stack size.

In Fuel, we do not use the mentioned recursion but instead
we use a stack. The difference is mainly in the last step of the
algorithm. When an object has references to other objects,
instead of following the recursion to analyze these objects,
we just push such objects on a stack. Then we pop objects
from the stack and analyze them. The routine is to pop and
analyze elements until the stack is empty. In addition, to
improve even more the speed, Fuel has its own SimpleStack
class implementation.

That way, Fuel turns a recursive trace into depth-by-depth
trace. With this approach the resulting stack size is much
smaller and the memory footprint is smaller. At the same
time, we increase serialization time by 10%.

Notice that Fuel makes it possible because of the separate
analysis phase before the actual object serialization.

Two phases for writing instances and references. The
encoding of objects is divided in two parts: (1) instances
writing and (2) references writing. The first phase includes
just the minimal information needed to recreate the instances
i.e., the vertexes of the graph. The second phase has the
information to recreate references that connect the instances
i.e., the edges of the graph.

Iterative graph recreation. The pickling algorithm care-
fully sorts the instances paying attention to inter-depencencies.

During Fuel serialization, when a cluster is serialized,
the amount of objects of such cluster is stored, as well as
the total amount of objects of the whole graph. This means
that at materialization time, Fuel know exactly the number
of allocations (new objects) needed for each cluster. For
example, one Fuel file contains 17 large integers, 5 floats,
and 5 symbols, etc. In addition, for variable objects, Fuel

also stores the size of such objects. So for example, it does
not only know that there are 5 symbols but also that the first
symbol is size 4, the second one 20, the third 6, etc.

Therefore, the materialize populates an object table with
indices from 1 to N where N is the number of objects in the
file. However, it does so in batch, spinning in a loop creating
N instances of each class in turn, instead of determining
which object to create as it walks a (flattened) input graph,
as most of the serializers do.

Once that is done, the objects have been materialized, but
updating the references is pending, i.e., which slots refer to
which objects. Again the materializer can spin filling in slots
from the reference data instead of determining whether to
instantiate an object or dereference an object id as it walks
the input graph.

This is the main reason why materializing is much faster
in Fuel than the other approaches.

Buffered write stream. A serializer usually receives two
parameters from the user: the object graph to serialize and
the stream where the former should be stored. Most of the
time, such stream is a file stream or a socket stream. We
know that writing to primary memory is much faster that
writing to disc or to a network. Writing into a file stream
or a network stream for every single object is terribly slow.
Fuel uses an internal buffer to improve performance in that
scenario. With a small buffer e.g., 4096 elements, we get
almost the same speed writing to a file or socket stream, as
if we were writing in memory.

7. Fuel Features
In this section we analyze Fuel in accordance with the con-
cerns and features defined in Section 4.

7.1 Fuel serializer concerns
Performance. We achieved an excellent time performance.
This topic is extensively studied and explained in Section 8.

Completeness. We are close to say that Fuel deals with all
kinds of objects. Notice the difference between being able
to serialize and to get something meaningful while materi-
alizing. For example, Fuel can serialize and materialize in-
stances of Socket, Process or FileStream, but it is not sure
they will still be valid once they are materialized. For exam-
ple, the operating system may have given the socket address
to another process, the file associated to the file stream may
have been removed, etc.

There is no magic. Fuel provides the infrastructure to
solve the mentioned problems. For example, there is a hook
where a message can be implemented in a particular class
and such message will be send once the materialization
is done. In such method one can implement the necessary
behavior to get a meaningful object. For instance, a new
socket may be asked and assigned. Nevertheless sometimes
there is nothing to do, e.g., if the file of the file stream was
removed by the operating system.

It is worth to note here that some well known special
objects are treated as external references, because that is

7 2011/8/16

the expected behavior for a serializer. Some examples are
Smalltalk, Transcript and Processor.

Portability. As we explained in other sections, portability
is not our main focus. Thus, the only portability aspect we
are interested in is between Fuel versions. Below we talk
about our versioning mechanism.

Versatility and Abstraction capacity. Both concerns are
tightly tied. The goal is to be as concrete and exact as possi-
ble in the graph recreation, but providing flexible ways to
customize abstractions as well as other kinds of substitu-
tions in the graph. This last affirmation still has to be im-
plemented.

Security. Our goal is to give the user the possibility to con-
figure validation rules to be applied over the graph (ideally)
before having any secondary effect on the environment. This
is not yet implemented.

Atomicity. Unfortunately, Fuel can have problems if the
graph changes during the analysis or serialization phase.
This is an issue we have to work on in next versions.

7.2 Fuel serializer challenges
In this section, we explain how Fuel implements some of the
features previously commented. There are some mentioned
challenges we do not include here because Fuel does not
support them at the moment.

Maintaining identity. Although it can be disabled, the
default behavior when traversing the graph is to recog-
nize some objects as external references: Classes registered
in Smalltalk, global objects i.e., referenced by global vari-
ables, global bindings i.e., included in Smalltalk globals as-
sociations, and class variable bindings i.e., included in the
classPool of a registered class.

It is worth to mention that this mapping is done at object
granularity, e.g., not every instance of Class will be recog-
nized as external. If a class is not in Smalltalk globals or if it
has been specified as an internal class, it will be traversed
and serialized in full detail.

Transient values. Fuel supports this by the class-side hook
fuelIgnoredInstanceVariableNames. The user can specify there
a list of variable names whose values will not be traversed or
serialized. On materialization they will be restored as nil.

Cyclic object graphs and duplicates. Fuel checks that ev-
ery object of the graph is visited once, supporting both cycle
and duplicate detection.

Class shape change tolerance. Fuel stores the list of vari-
able names of the classes that have instances in the graph
being written. While recreating an object from the stream, if
its class (or anyone in the hierarchy) has changed, then this
meta information serves to automatically adapt the stored in-
stances. When a variable does not exist anymore, its value is
ignored. If a variable is new, it is restored as nil.

Versioning. This is provided by Fuel through a experimen-
tal implementation that wraps the standard Fuel format, ap-
pending at the beginning of the stream a version number.
When reading, if such number matches with the current ver-
sion, it is straightforward materialized in the standard way.
If it does not match, then another action can be taken de-
pending on the version. For example, suppose the difference
between the saved version and the current version is a cluster
that has been optimized and so their formats are incompati-
ble. Now, suppose the wrapper has access to the old cluster
class and so it configures the materializer to use this imple-
mentation instead of the optimized one. Then, it can adapt
the way it reads, providing backward compatibility.

Graphical progress update. Fuel has an optional package
that is used to show a progress bar while processing either
the analysis, the serialization or the materialization. This
GUI behavior is added via subclassification of Fuel core
classes, therefore it does not add overhead to the standard
non-interactive use case. This implementation is provisional
since the future idea is to apply a strategy design pattern.

8. Benchmarks
We have developed several benchmarks to compare different
serializers. To get meaningful results all benchmarks have to
be run in the same environment. In our case we run them in
the same Smalltalk dialect, with the same Virtual Machine
and same Smalltalk image. Fuel is developed in Pharo, and
hence the benchmarks were run in Pharo Smalltalk, image
version Pharo-1.3-13257 and Cog Virtual Machine version
“VMMaker.oscog-eem.56”. The operating system was Mac
OS 10.6.7.

In the following benchmarks we have analyzed the serial-
izers: Fuel, SIXX, SmartRefStream, ImageSegment, Magma
object database serializer, StOMP and SRP. Such serializers
are explained in Section 9.

8.1 Benchmarks Constraints and Characteristics
Benchmarking software as complex as a serializer is difficult
because there are multiple functions to measure which are
used independently in various real-world use-cases. More-
over, measuring only the speed of a serializer is not complete
and it may not even be fair if we do not mention the provided
features of each serializer. For example, providing a hook
for user-defined reinitialization action after materialization,
or supporting class shape changes slows down serializers.

Here is a list of constraints and characteristics we used to
get meaningful benchmarks:

All serializers in the same environment. We are not inter-
ested in compare speed with serializers that do not run in
Pharo.

Use default configuration for all serializers. Some seri-
alizers provide customizations to improve performance, i.e.,
some parameters or settings that the user can set for serial-
izing a particular object graph. Those settings would make
the serialization or materialization faster. For example, a se-

8 2011/8/16

rializer can provide a way to do not detect cycles. Detecting
cycles takes time and memory hence, not detecting them is
faster. Consequently, if there is a cycle in the object graph
to serialize, there will be a loop and finally a system crash.
Nevertheless, in certain scenarios the user may have a graph
that he knows that there is no cycles.

Streams. Another important point while measuring serial-
izers performance is which stream to be used. Usually, one
can use memory based stream based and file based streams.
Both measures are important and there can be significant dif-
ferences between them.

Distinguish serialization from materialization. It makes
sense to consider different benchmarks for the serialization
and for the materialization.

Different kind of samples. Benchmark samples are split in
two kinds: primitive and large. Samples of primitive objects
are samples with lots of objects which are instances of the
same class and that class is “primitive”. Examples of those
classes are Bitmap, Float, SmallInteger, LargePositiveInteger,
LargeNegativeInteger, String, Symbol, WideString, Character,
ByteArray, etc. Large objects are objects which are composed
by other objects which are instances of different classes,
generating a large object graph.

Primitive samples are useful to detect whether one serial-
izer is better than the rest while serializing or materializing
certain type of object. Large samples are more similar to the
expected user provided graphs to serialize and they try to
benchmark examples of real life object graphs.

Avoid JIT side effects. In Cog (the VM we used for bench-
marks), the first time a method is used, it is executed in the
standard way and added to the method cache. The second
time the method is used, that means, when it is found in the
cache, Cog converts that method to machine code. However,
extra time is needed for such task. Only the third time the
method will be executed as machine code and without extra
effort.

It is not fair to run sometimes with methods that has been
converted to machine code and sometimes with methods that
have not. Therefore, for the samples we first run twice the
same sample without taking into account its execution time
to be sure to be always in the same condition. Then the sam-
ple is finally executed and its execution time is computed.

8.2 Benchmarks serializing with memory based
streams

In this benchmarks we use memory based streams.

Primitive objects serialization. Figure 5 shows the results
of primitive objects serialization.

Figure 6 shows the materialization of the serialization
done for Figure 5.

The conclusions for serializing primitive objects with
memory based streams are:

• We did not include SIXX in the charts because it was
so slow that otherwise we were not able to show the

Figure 5. Primitive objects serialization in memory.

Figure 6. Primitive objects materialization from memory.

differences between the rest of the serializers. This result
is expected since SIXX is a text based serializer, which
is far slower than a binary one. However, SIXX can be
opened and modified by any text editor. This is an usual
trade-off between text and binary formats.

• Magma and SmartRefStream serializers seem to be the
slowest ones most of the cases.

• StOMP is the fastest one in serialization. Near to them
there are Fuel, SRP, and ImageSegment.

9 2011/8/16

• Magma serializer is slow with “raw bytes” objects such
as Bitmap and ByteArray, etc.

• Most of the cases, Fuel is faster than ImageSegment,
which is even implemented in the Virtual Machine.

• ImageSegment is really slow with Symbol instances. We
explain the reason later.

• StOMP has a zero (its color does not even appear) in the
WideString sample. That means that cannot serialize those
objects.

• In materialization, Fuel is the fastest one. Then after there
are StOMP and ImageSegment.

Large objects serialization. As explained, these samples
contain objects which are composed by other objects which
are instances of different classes, generating a large object
graph. Figure 7 shows the results of large objects serial-
ization. Such serialization is also done with memory based
stream. Figure 8 presents the materialization results when
using the same scenario of Figure 7.

Figure 7. Large objects serialization in memory.

The conclusions for large objects are:

• The differences in speed are similar to the previous
benchmarks. This means that whether we serialize graphs
of all primitive objects or objects instances of all differ-
ent classes, Fuel is the fastest one in materialization and
one of the best ones in serialization.

• StOMP, SRP, and SmartRefStream cannot serialize the
samples for arrays, orderedCollections, sets, etc. This is
because those samples contain different kind of objects,
included BlockClosure and MethodContext. This demon-
strates that the mentioned serializers does not support se-
rialization and materialization of all kind of objects. At
least, not out-of-the-box.

Figure 8. Large objects materialization from memory.

8.3 Benchmarks serializing with file based streams
Now we use file based streams. In fact, the exact stream
we use is MultiByteFileStream. Figure 9 shows the results of
primitive objects serialization.

Figure 9. Primitive objects serialization in file.

Figure 10 shows the same scenario of Figure 9 but the
results of the materialization.

The conclusions for serialization with file based streams
are:

• It is surprising the differences between serializing in
memory and in file. In serialization, SmartRefStream is
by far the slowest.

10 2011/8/16

Figure 10. Primitive objects materialization from file.

• SRP and StOMP have good performance when serializ-
ing in memory, but not at all when serializing to a file
based stream.

• Fuel is the fastest one, taking advantage of its internal
buffering technique.

• Magma was one of the slowest in memory based stream
but in this case it is much better.

• SmartRefStream and SRP are really slow with WideString
instances.

• ImageSegment is slow with Symbol instances.

The conclusions for materialization with file based streams
are:

• Again, Magma serializer is slow with “raw bytes” objects
such as Bitmap and ByteArray, etc.

• ImageSegment is slow with Symbol instances.

These benchmarks showed that different serializers per-
form differently when serializing in memory or in files.

8.4 ImageSegment Results Explained
ImageSegment seems to be really fast in certain scenarios.
However, it deserves some explanations of how ImageSeg-
ment works. Basically, ImageSegment receives the user de-
fined graph and it needs to distinguish between shared ob-
jects and inner objects. Inner objects are those objects inside
the subgraph which are only referenced from objects inside
the subgraph. Shared objects are those which are not only
referenced from objects inside the subgraph, but also from
objects outside.

All inner objects are put into a byte array which is finally
written into the stream using a primitive implemented in the
virtual machine. After, ImageSegment uses SmartRefStream

to serialize the shared objects. ImageSegment is fast mostly
because it is implemented in the virtual machine. However,
as we saw in our benchmarks, SmartRefStream is not really
fast. The real problem is that it is difficult to control which
objects in the system are pointing to objects inside the sub-
graph. Hence, most of the times there are several shared ob-
jects in the graph. The result is that the more shared objects
there are, the slower ImageSegment is because those shared
objects will be serialized by SmartRefStream.

All the benchmarks we did with primitive objects (all but
Symbol) take care to create graphs with zero or few shared
objects. That means that we are measuring the fastest pos-
sible case ever for ImageSegment. Nevertheless, in the sam-
ple of Symbol one can see in Figure 5 that ImageSegment is
really slow in serialization, and the same happens with ma-
terialization. The reason is that in Smalltalk all instances of
Symbol are unique and referenced by a global table. Hence,
all Symbol instances are shared and therefore, serialized with
SmartRefStream.

We did an experiment where we build an object graph and
we increase the percentage of shared objects.

Figure 11 shows the results of primitive objects serializa-
tion with file based stream. Axis X represents the percentage
of shared objects inside the graph and the axis Y represents
the time of the serialization.

Figure 11. ImageSegment serialization in presence of
shared objects.

Figure 12 shows the same scenario of Figure 11 but the
results of the materialization.

Conclusions for ImageSegment results
• The more shared objects there are, the more ImageSeg-

ment speed is similar to SmartRefStream.
• For materialization, when all are shared objects, Im-

ageSegment and SmartRefStream have almost the same
speed.

• For serialization, when all are shared objects, ImageSeg-
ment is even slower than SmartRefStream. This is be-

11 2011/8/16

Figure 12. ImageSegment materialization in presence of
shared objects.

cause ImageSegment needs to do the whole memory tra-
verse anyway to discover shared objects.

• ImageSegment is unique in the sense that its performance
depends in both: 1) the amount of references from outside
the subgraph to objects inside; 2) the total amount of
objects in the system, since the time to traverse the whole
memory depends on that.

8.5 General Benchmarks Conclusions
Magma serializer seems slow when serializing in memory,
but it is acceptable taking into account that this serializer
is designed for a particular database. Hence, the Magma
serializer does extra effort and stores extra information that
is needed in a database scenario but may not be necessary
for any other usage.

SmartRefSteam provides a good set of hook methods for
customizing serialization and materialization. However, it is
slow and its code and design are not good from our point of
view. ImageSegment is known to be really fast because it is
implemented inside the virtual machine. Such fact, together
with the problem of shared objects, brings a large number of
limitations and drawbacks as it has been already explained.
Furthermore, with Cog we demonstrate that Fuel is even
faster in both, materialization and serialization. Hence, the
limitations of ImageSegment are not worth it.

SRP and StOMP are both aimed for portability across
Smalltalk dialects. Their performance is good, mostly at
writing time, but they are not as fast as they could because
of the need of being portable across platforms. In addition,
for the same reason, they do not support serialization for all
kind of objects.

This paper demonstrates that Fuel is the fastest in ma-
terialization and one the fastest ones in serialization. In fact,
when serializing to files, which is what usually happens, Fuel
is the fastest. Fuel can also serialize any kind of object. Fuel

aim is not portability but performance. Hence, all the results
make sense from the goals point of view.

9. Related work
The most common example of a serializer is one based on
XML like SIXX [17] or JSON [9]. In this case the object
graph is exported into a portable text file. The main problem
with text-based serialization is encountered with big graphs
as it does not have a good performance and it generates huge
files. Other alternatives are ReferenceStream or SmartRefer-
enceStream. ReferenceStream is a way of serializing a tree
of objects into a binary file. A ReferenceStream can store
one or more objects in a persistent form including sharing
and cycles. The main problem of ReferenceStream is that it
is slow for large graphs.

A much more elaborated approach is Parcel [12] devel-
oped in VisualWorks Smalltalk. Fuel is based on Parcel’s
pickling ideas. Parcel is an atomic deployment mechanism
for objects and source code that supports shape changing
of classes, method addition, method replacement and partial
loading. The key to making this deployment mechanism fea-
sible and fast is a pickling algorithm. Although Parcel sup-
ports code and objects, it is more intended to source code
than normal objects. It defines a custom format and gener-
ates binary files. Parcel has good performance and the as-
sumption is that the user may not have a problem if saving
code takes more time, as long as loading is really fast.

The recent StOMP1 (Smalltalk Objects on MessagePack2)
and the mature SRP3 (State Replication Protocol) are bi-
nary serializers with similar goals: Smalltalk-dialect porta-
bility and space efficiency. They are quite fast and config-
urable, but they are limited with dialect-dependent objects
like BlockClosure and MethodContext. Despite the fact that
their main goals differ from ours, we should take into ac-
count their designs.

Object serializers are needed and used not only by final
users, but also for specific type of applications or tools. What
it is interesting is that they can be used outside the scope
of their project. Some examples are the object serializers of
Monticello2 (a source code version system), Magma object
database, Hessian binary web service protocol [7] or Oracle
Coherence*Web HTTP session management [13].

Martinez-Peck et al. [11] performed an analysis of Image-
Segment (a virtual machine serialization algorithm) and they
found that the speed increase in ImageSegment is mainly be-
cause it is written in C compared to other frameworks writ-
ten in Smalltalk. However, ImageSegment is slower when
objects in the subgraph to be serialized are externally refer-
enced.

1 http://www.squeaksource.com/STOMP.html
2 http://msgpack.org
3 http://sourceforge.net/projects/srp/

12 2011/8/16

10. Conclusion and Future Work
In this paper, we have looked into the problem of serializing
object graphs in object oriented systems. We have analyzed
its problems and challenges. What is important is that these
steps, together with their problems and challenges, are gen-
eral and they are independent of the technology.

These object graphs operations are important to sup-
port virtual memory, backups, migrations, exportations, etc.
Speed is the biggest constraint in these kind of graph op-
erations. Any possible solution has to be fast enough to be
actually useful. In addition, this problem of performance is
the most common problem among the different solutions.
Most of them do not deal properly with it.

We presented Fuel, a general purpose object graph serial-
izer based on a pickling format and algorithm different from
typical serializers. The advantage is that the unpickling pro-
cess is optimized. In one hand, the objects of a particular
class are instantiated in bulk since they were carefully sorted
when pickling. In the other hand, this is done in an iterative
instead of a recursive way, what is common in serializers.
The disadvantage is that the pickling process takes an extra
time in comparison with other approaches. Besides, we show
in detailed benchmarks that we have the best performance in
most of the scenarios we are interested in.

We implement and validate this approach in the Pharo
Smalltalk environment. We demonstrate that it is possible
to build a fast serializer without specific VM support, with
a clean object-oriented design, and providing most possible
required features for a serializer.

Even if Fuel has an excellent performance and provided
hooks, it can still be improved. Regarding the hooks, we
would like to provide one that can let the user replace one
object by another one, which means that the serialized graph
is not exactly the same as the one provided by the user.

Instead of throwing an error, it is our plan to analyze the
possibility of create light-weight shadow classes when ma-
terializing instances of an inexistent class. Another impor-
tant issue we would like to work on is in making everything
optional, e.g., cycle detection. Partial loading as well as be-
ing able to query a serialized graph are concepts we want to
work in the future.

To conclude, Fuel is a fast object serializer built with a
clean design, easy to extend and customize. New features
will be added in the future and several tools will be build on
top of it.

Acknowledgements
This work was supported by Ministry of Higher Education
and Research, Nord-Pas de Calais Regional Council and
FEDER through the CPER 2007-2013.

References
[1] J. K. Bennett. The design and implementation of distributed

Smalltalk. In Proceedings OOPSLA ’87, ACM SIGPLAN
Notices, volume 22, pages 318–330, Dec. 1987.

[2] A. P. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou,
and M. Denker. Pharo by Example. Square Bracket Asso-
ciates, 2009.

[3] M. D. Bond and K. S. McKinley. Tolerating memory leaks.
In G. E. Harris, editor, OOPSLA: Proceedings of the 23rd
Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA
2008, October 19-23, 2008, Nashville, TN, USA, pages 109–
126. ACM, 2008.

[4] F. Breg and C. D. Polychronopoulos. Java virtual machine
support for object serialization. In Joint ACM Java Grande -
ISCOPE 2001 Conference, 2001.

[5] P. Butterworth, A. Otis, and J. Stein. The GemStone object
database management system. Commun. ACM, 34(10):64–77,
1991.

[6] D. Decouchant. Design of a distributed object manager for
the Smalltalk-80 system. In Proceedings OOPSLA ’86, ACM
SIGPLAN Notices, volume 21, pages 444–452, Nov. 1986.

[7] Hessian. http://hessian.caucho.com.
[8] Java serializer api. http://java.sun.com/developer/

technicalArticles/Programming/serialization/.
[9] Json (javascript object notation). http://www.json.org.

[10] T. Kaehler. Virtual memory on a narrow machine for an
object-oriented language. Proceedings OOPSLA ’86, ACM
SIGPLAN Notices, 21(11):87–106, Nov. 1986.

[11] M. Martinez Peck, N. Bouraqadi, M. Denker, S. Ducasse, and
L. Fabresse. Experiments with a fast object swapper. In
Smalltalks 2010, 2010.

[12] E. Miranda, D. Leibs, and R. Wuyts. Parcels: a fast and
feature-rich binary deployment technology. Journal of Com-
puter Languages, Systems and Structures, 31(3-4):165–182,
May 2005.

[13] Oracle coherence. http://coherence.oracle.com.
[14] Pickle. http://docs.python.org/library/pickle.html.
[15] Google protocol buffers. http://code.google.com/apis/

protocolbuffers/docs/overview.html.
[16] R. Riggs, J. Waldo, A. Wollrath, and K. Bharat. Pickling state

in the Java system. Computing Systems, 9(4):291–312, 1996.
[17] Sixx (smalltalk instance exchange in xml). http://www.mars.dti.

ne.jp/~umejava/smalltalk/sixx/index.html.
[18] D. Ungar. Annotating objects for transport to other worlds. In

Proceedings OOPSLA ’95, pages 73–87, 1995.
[19] D. Wiebe. A distributed repository for immutable persistent

objects. In Proceedings OOPSLA ’86, ACM SIGPLAN No-
tices, volume 21, pages 453–465, Nov. 1986.

13 2011/8/16

IWST 2011 Selected papers

20

Using First-class Contexts to realize Dynamic Software Updates

Erwann Wernli David Gurtner Oscar Nierstrasz
Software Composition Group, University of Bern, Switzerland

http://scg.unibe.ch/

Abstract
Applications that need to be updated but cannot be easily
restarted must be updated at run-time. We evaluate the re-
flective facilities of Smalltalk with respect to dynamic soft-
ware and the state-of-the-art in this field. We conclude that
while fine for debugging, the existing reflective facilities are
not appropriate for dynamically updating production sys-
tems under constant load. We propose to enable dynamic up-
dates by introducing first-class contexts as a mechanism to
allow multiple versions of objects to coexist. Object states
can be dynamically migrated from one context to another,
and can be kept in sync with the help of bidirectional trans-
formations. We demonstrate our approach with ActiveCon-
text, an extension of Smalltalk with first-class contexts. Ac-
tiveContext eliminates the need for a system to be quiescent
for it to be updated. ActiveContext is realized in Pinocchio,
an experimental Smalltalk implementation that fully reifies
the VM to enable radical extensions. We illustrate dynamic
updates in ActiveContext with a typical use case, present ini-
tial benchmarks, and discuss future performance improve-
ments.

1. Introduction
Software needs to be updated: Apart from the need to con-
tinuously evolve applications to support new and possibly
unanticipated features, there is also a need to fix existing
bugs.

Changing the system at run-time for debugging purposes
has long been a common practice in dynamic object-oriented
languages such as JavaScript, Ruby and Smalltalk. In the
case of Smalltalk, as it is fully reflective, there is actually
no other way to change the system than to adapt it at run-
time, and development in Smalltalk is conducted with this in
mind.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c� ACM [to be supplied]. . . $10.00

In this paper we discuss the requirements for the dynamic
update of production systems, and evaluate the reflective
capabilities of Smalltalk according to these requirements.
We consider three main dimensions during this evaluation:
safety, the ability to ensure that dynamic updates will not
lead to abnormal executions, timeliness, the ability to install
the update quickly, and practicality, the fact that the dynamic
software update mechanism must not constrain developers.
The outcome of this analysis is that while the existing re-
flective mechanisms are fine for debugging, they are not ad-
equate to update production systems under constant load, no-
tably because of safety issues.

As a remedy to the problems we have identified, we
propose ActiveContext, an extension of Smalltalk with first-
class contexts. Contexts have two roles: they dynamically
scope software versions, and they mediate access to objects
that can be migrated back and forth between versions. As
a consequence, the single abstraction of a first-class context
enables not only the isolation of software versions, but also
the transition from one version to another.

Making contexts first-class empowers the developers
with more control over how dynamic updates should hap-
pen; it shifts part of the responsibility of the update from
the system to the application. This way, it becomes possible
to tailor the update scheme to the nature of the application,
e.g., rolling out new code on a per-thread basis for an FTP
server, or on a per-session basis for a web application.

Entities shared between several versions are mediated by
the system and code running entirely in one version is guar-
anteed to be always consistent. The abstraction of context is
intuitive and can be implemented with a reasonable over-
head. ActiveContext qualifies as a safe and practical ap-
proach to dynamic software update.

As a validation, we have implemented ActiveContext in
Pinocchio, an experimental Smalltalk platform that fully rei-
fies the runtime to enable invasive language extensions. We
demonstrate a typical use case with a Telnet server.

First we discuss the challenges of dynamic software up-
date and review existing literature in section 2. In section 3
we present our approach with the help of a running exam-
ple. In section 4 we present the model in more detail, and in
section 5 we present an implementation. We discuss future
work in section 6 before we conclude in section 7.

2. Why dynamic updates are challenging
The main challenge of dynamic updates is achieving an op-
timal compromise between safety, timeliness and practical-
ity. Safety means that dynamic updates are guaranteed to not
lead to abnormal executions ; timeliness means that updates
are installed immediately and instantly; practicality means
that the system does not impose additional constraints dur-
ing development or operation. We resort to common sense
for why these characteristics are desirable.

To understand why there are tensions between these prop-
erties, let’s consider an update that alters a method signature.
Once installed, subsequent invocations of the method will
use the updated method body that expects the newest list of
arguments. It is clear that installing the change immediately
is unsafe, as active methods on the stack might still presume
the old signature, which will lead to type errors [21]. To in-
crease safety, type errors can be prevented with the proper
timing of the update using automated checks, but the behav-
ior of the program might still be incorrect depending on the
change in the program’s logic [23]. Manual assistance to de-
fine safe update times is required [12, 22]. This affects neg-
atively both practicality and timeliness.

Obviously, the layout of classes (the set of fields and
methods) can change as well, which means the program state
(object instances) must be adapted correspondingly during
the update. If the update is immediate, active methods might
presume the old type and lead to inconsistent accesses to
state. Automated checks to delay the update can prevent such
type errors, but are not enough. In the case of state, not only
should we consider when to migrate the state, but how : ex-
isting invariants in the program state must be preserved and
safe updates require manual assistance to provide adapters
that will migrate the old state to a new, valid, state. This im-
pacts practicality negatively.

A way to reconcile safety and timeliness is to restrict the
update to only certain changes, e.g., changes that do not alter
types, or changes that are behavior-preserving [19], but this
impedes practicality.

Note that transferring the state for large heaps has the
same tensions between safety, timeliness and practicality :
state transfer in a stop-the-world fashion is safe and practi-
cal but compromises timeliness, while lazy state transfer is
timely but either unsafe, or less practical [2] depending on
the design.

2.1 Assessment of Smalltalk
Now that we have explored the core reasons of these ten-
sions, let’s focus on Smalltalk and assess its reflective capa-
bilities according to safety, timeliness and practicality:

Safety. Smalltalk initializes new fields to nil and does
not allow to customize state transfer such that it maintains
existing invariants in the program state.

Run-time errors can occur after an update. When a field
is removed, all methods of the class are recompiled. Ac-

cesses to the suppressed field return nil instead, and assign-
ment to the suppressed field are ignored. Old versions of the
method existing on the stack might continue to run, which
can lead to severe errors such as the mutation of instance
variable at the wrong index, or even the crash of the en-
tire image. Method suppression does not suffer such severe
symptoms, as method resolution is dynamic, and at worst
raises a doesNotUnderstand error.

Smalltalk does not support the atomic installation of co-
related changes to multiple classes. An execution that uses a
mix of old and new versions of the classes might be incor-
rect.

Timeliness. Changes are installed immediately. Object in-
stances are migrated in a stop-the-world fashion. Changes on
classes that are higher in the class hierarchy might result in
the recompilation of many subclasses, as well as the migra-
tion of their object instances, which might take long.

Practicality. Arbitrary changes to method signature, method
body, class hierarchy or class shape are supported. There is
no overhead after the installation of the update.

As this analysis shows, the reflective capabilities of
Smalltalk are timely and practical, but not safe, which makes
them inadequate to update production systems on the fly. In
practice, developers rely on ad-hoc scripts and techniques to
update their Smalltalk image in production.

2.2 Other approaches
A large body of research has tackled the dynamic update of
applications, but no mechanism resolved all three tensions
previously presented. Existing approaches can be classified
into three categories:

1. Systems supporting immediate and global dynamic up-
date have been devised with various levels of safety and
practicality. Dynamic languages other than Smalltalk be-
long naturally to this category; they are very practical but
not safe. Dynamic AOP and meta-object protocols also fit
into this category. Systems for Java [5, 8, 11, 16, 24, 26]
of this kind have been devised. However, they are less
practical and impose restrictions on the kinds of changes
supported, due to Java’s type system [30]. For example,
only method bodies can be updated with HotSwap [8].
Other systems have tried to reconcile practicality and
static typing, at the expense of timeliness or safety. For
example, some updates will be rejected if they are not
provably type-safe [20] or might produce run-time er-
rors [33].

2. Several approaches have tackled the problem of safety by
relying on update points to define temporal point when
it is safe to globally update the application. Such sys-
tems have been devised for C [14, 22], and Java [28].
Update points might be hard to reach, especially in multi-

threaded applications [21], and this compromises the
timely installation of updates.

3. Some approaches do not carry out the update globally
and allow different versions of the entities to coexist
at run-time. Different variations of this scheme exist.
With dynamic C++ classes [15], the structure of existing
objects is not altered, and only new objects have the new
structure ; the code is however updated globally which
is unsafe. With Gemstone [10], class histories enable
different versions of classes to coexist, and objects can
be migrated on demand from one version to another ; this
is more flexible than an immediate migration but is still
unsafe. A strategy that is safe is to adapt the entities back
and forth when accessed from different versions of the
code using bi-directional transformations. To the best of
our knowledge, only two approaches have pursued the
latter one: a dynamic update system for C [6], and a type
system extended with the notion of run-time version tags
that enables hot swapping modules [9].

More generally, dynamic software updating relates to
techniques that promote late binding. Three main cate-
gories of such techniques can be listed: support for vir-
tual classes [18], isolation of software versions (Java class
loader [17], ChangeBox [7], and ObjectSpace [4]), and fine-
grained scoping of variations (selector namespaces, context-
oriented programming [29], classbox [1]). Finally, the mi-
gration of instances relates to the problem of schema evo-
lution [25] and techniques to convert between types (ex-
panders [32], translation polymorphism [13], implicit con-
version [27]). None of these techniques is in itself sufficient
to enable dynamic software update though.

3. Our approach — ActiveContext
We believe that dynamic software updates should be ad-
dressed explicitly (i.e., reflectively), so as to give develop-
ers control over when new code becomes active. Developers
should be able to implement an appropriate update scheme
for the application, such as roll out new code on a per-thread
basis for an FTP server, or on a per-session basis for a web
application.

Most approaches for dynamic software updates are either
non-reflective, or reflective but lack safety. One notable
exception is the work by Duggan [9], which is both reflective
and safe. However, it relies on static typing, and the update
of a module impacts all modules depending on it: they must
all be updated and use the new type, which is not practical.
It also fails to support the atomic change of multiple types at
once.

ActiveContext is an approach that aims to introduce an
ideal dynamic software update mechanism that is explicit
and satisfies all requirements established previously. It in-
troduces first-class contexts into the language in a way that
reifies software versions. Contexts can be loaded, instanti-

html

aPage

header
body

Root context Updated context

transformToAncestor

transformFromAncestor

"<header>My page</header>
 <body>My text</body>" "My page"

"My text"

Figure 1. An instance of a Page object has different states
in different contexts. There are transformation functions be-
tween the two contexts.

ated, and manipulated explicitly. A context defines a dy-
namic scope, within which code can be executed, which is
just as simple as aContext do: [....] .

Contexts also encode bi-directional transformations for
objects whose representations differ between contexts, but
whose consistency is maintained by the system. Thanks to
the mediation of objects using bi-directional transforma-
tions, code running in different contexts can coexist at run-
time, yet safely operate on shared data. ActiveContext be-
longs to the third kind of approach described in subsec-
tion 2.2.

3.1 ActiveContext examplified
To illustrate our approach to dynamic software updates, let
us consider the evolution of a class in a Web Content Man-
agement System like Pier1. The main entity of the domain
model of such a system is the Page. It represents the source
code of an HTML document. The domain model is held in
memory, globally accessible, and shared amongst all threads
serving HTTP requests. Let us consider the evolution shown
in Figure 1. The Page class is refactored, and the data stored
originally in the html field is now stored in two individual
fields body and header.

Such an evolution cannot be easily achieved with the re-
flective facilities of Smalltalk: it would require an “interme-
diate” version of the class with all three fields html, body,
header in order to allow the state of the concerned object in-
stances to be migrated incrementally, for instance with Page

allInstances do: [...]. Only then could the html field be re-
moved. Such an update is not only complicated to install, but
is also not atomic, possibly leading to consistency issues.

Dynamic software update mechanisms that carry out im-
mediate updates (first category in subsection 2.2) face the
risk that some existing thread running old code may access
the html field which no longer exists. Those which use up-
date points (2nd category in subsection 2.2) would still have
to wait until all requests complete prior to a global update of
the system state.

The following steps describe how such an update can
be installed with ActiveContext while avoiding these issues.
First, the application must be adapted so that we can “push”

1 http://www.piercms.com

an update to the system and activate it. Here is how one
would typically adapt a Web Content Management System
or any server-side software serving requests.

0. Preparation. First, a global variable latestContext is
added to track the latest execution context to be used.
Second, an administrative page is added to the Web Con-
tent Management System where an administrator can
push updates to the system; the uploaded code will be
loaded dynamically. Third, the main loop that listens to
incoming requests is modified so that when a new thread
is spawned to handle the incoming request, the latest ex-
ecution context is used:

latestContext do: [

[anIncomingRequest process] fork.

]

After these preliminary modifications the system can be
started, and now supports dynamic updates. The lifecycle of
the system is now the following:

1. Bootstrap. After the system bootstraps, the application
runs in a default context named the Root context. The
global variable latestContext refers to the Root context.
At this stage only one context exists and the system is
similar to a non-contextual system.

2. Offline evolution. During development, the field html is
replaced with the two fields body and header. Figure 1
shows the impact on the state of a page.

3. Update preparation. The developer creates a class, say
called UpdatedContext, that specifies the variations in the
program to be rolled out dynamically. This is done by im-
plementing a bidirectional transformation which converts
the program state between the Root context and the Up-
dated context. Objects will be transformed one at a time.
In our example, the field html is split into body and header

in one direction, and the fields body and header are joined
into html in the other direction. The class of an object is
considered to be part of the object’s state and the transfer
function also specifies that an updated version of the Page

class will be used in the Updated context.
Contexts may coexist at run-time for any length of time.
It is therefore necessary that the object representations
stay globally consistent with one another, which explains
the need for a bidirectional transformation: if the state of
an object is modified in one context, the effect propagates
to the representation in the other contexts as well. Only
fields that make sense need to be updated though; fields
that have been added or removed and have no counterpart
in another context can naturally be omitted from the
transformations.

4. Update push. Using the administrative web interface,
the developer uploads the updated Page class and the
UpdatedContext class. The application loads the code dy-

Root Updated Update'
ancestor

successor

ancestor

successor

transformFromAncestor

transformToAncestor

transformFromAncestor

transformToAncestor

Figure 2. Context instances form a list

namically. It detects that one class is a context and in-
stantiates it. This results in the generation of the new rep-
resentation of all pages in the system. Objects now have
two representations in memory. Last, the global variable
latestContext is updated and refers to the newly created
instance of the Updated context.

5. Update activation. When a new incoming request is ac-
cepted, the application spawns a new thread to serve
the request. The active context that was dynamically
changed in the listener thread (see point 0) propagates
to the spawned thread. The execution context will be the
context referenced in latestContext, which is now the
Updated context.

6. Stabilization. This update scheme changes the execu-
tion context per thread. Existing threads serving ongo-
ing requests will finish their execution in the Root con-
text, while new threads will use the Updated context.
Assuming that requests always terminate, the system
will eventually stabilize. A page can always be accessed
safely from one execution context or another as the pro-
gramming model maintains the consistency of various
representations using the bidirectional transformations.
This alleviates the need for global, temporally synchro-
nized update points which can be hard to reach in multi-
threaded systems.

Subsequent updates will be rolled out following the same
scheme. For each update a context class is created, and then
loaded and instantiated dynamically. Contexts are related
to each other with an ancestor/successor relationship. They
form a list, with the Root context as oldest ancestor, as shown
in Figure 2.

7. Garbage collection. When no code runs in the oldest
context any longer, the context can be removed from the
list and be garbage collected, just as the representation of
objects in it. (This step is not implemented yet)

4. The ActiveContext Model
We now present the ActiveContext model in more detail.
ActiveContext makes a clear distinction between the iden-
tity and the contextual state of an object. An object can have
several representations which remain consistent with one an-
other thanks to state transformations. Behavior can change

as well, since the class of an object is part of its state. Ac-
tiveContext is a programming model that supports dynamic
scoping of state and migration of state between contexts.

4.1 Identity, State and Contexts
An object identifier uniquely identifies an object in any given
context (where that object exists). The state of an object
may, however, vary from context to context. The contextual
state of an object consists of (i) a set of fields and their
corresponding values, and (ii) its class, which depends on
the context. Of course, the fields of the object must match
the fields declared in the (contextual) class description.

An object can have as many states as there are contexts.
A context can be seen as a mapping between the global
identities of all objects and their corresponding states in that
context. A thread can have one active context at a time.
However, the active context of a thread can be switched
any time. Contexts consequently constitute dynamic scopes:
aContext do: [...].

The interpreter or virtual machine has an intimate knowl-
edge of contexts like classes or other internal abstractions.
Contexts are however explicit in our model and reified as
first-class entities at the application level. Contexts can be
instantiated and manipulated dynamically like other objects.
When a new thread is created, it inherits the context of its
parent thread, which will be the active context for that thread
of execution as soon as it starts running.

The class of an object is part of its state. Behavioral
variations are therefore achieved by changing the class of
the object between contexts, and scoping behavioral changes
reduces to a special case of scoping state.

4.2 Transformations
As shown in Figure 2, contexts form a list at run-time. They
must have an ancestor, and they must implement two meth-
ods transformFromAncestor and transformToAncestor that re-
alize the bidirectional transformation.

The role of the bidirectional transformation is to maintain
consistency between several representations of an object in
various contexts. A change to an object in a context will
propagate to its ancestor and successor—which in turn will
propagate it further—so as to keep the representations of an
object consistent in all contexts.

As contexts are loaded dynamically in an unanticipated
fashion, the transformation is encoded in the newest context
and expressed in terms of its ancestor, never in terms of its
successor. We have one method to transform from the ances-
tor to the newest context, and another method to transform
from the newest context to its ancestor. The Root context is
the only context that does not encode any transformation.

A sample one-way transformation is shown in Figure 3. It
corresponds to the transformation from the Root context to
the Updated context of Figure 1. self refers to the Updated
context, and ancestor to the Root context. Line 5 reads the
html of the Page in the Root context. Lines 7–8 split the html

1. transformFromAncestor: id

2. | cls html body header |

3. cls := ancestor readClassFor: id.

4. (cls = Page) ifTrue: [

5. html := ancestor readField: ’html’ for: id.

6. html isNil ifFalse: [

7. body:= html regex: ’<body>(.*)</body>’.

8. header:= html regex: ’<header>(.*)</header>’.

9.].

10. self writeClassFor: id value: Page2.

11. self writeField: ’body’ for: id value: body.

12. self writeField: ’header’ for: id value: header.

13.]

14. (cls = AnotherClass) ifTrue: [

15. ...

16.]

17. ...

Figure 3. State transfer—one-to-one mapping between two
versions of a class.

into body and header, and the representation of the Page in the
Updated context is updated accordingly in lines 11–12.

4.3 Meta levels
Contexts are meta-objects that are causally connected with
the runtime: field writes and object instantiations will be
evaluated differently depending on the set of contexts and
their corresponding transformations.

Before a context can be used, it must first be registered via
aContext register. This establishes the causal connection
between a context and the runtime. The registration will also
create the new representation of all contextual objects in the
newly registered context. After this step, the context can be
used and only of objects that are created or modified will
need to be synchronized later on. This way, all contextual
objects have a valid representation in all existing contexts
anytime.

Transformations are never called directly by the applica-
tion, but by the run-time itself because of the causal connec-
tion. This corresponds to two distinct meta-levels, that we
refer to as the application level and the interpreter level:
user-written code runs at the application level, except for
transformations that run at the interpreter level.

4.4 Primitive
Contexts are connected with the run-time, and their state
is accessed by the interpreter or virtual machine itself (not
only other application objects), which means contexts can’t
be contextual. If they were, then the code of the interpreter
would also be contextual, and it would need to be inter-
preted by another interpreter. To avoid the infinitive meta-
regression, code running at the interpreter level runs outside
of any context. As a consequence, some objects in the sys-
tem must be primitive: they have a unique state in the system
and are not subject to contextual variations. Context objects
are an example.

1. transformFromAncestor: id

2. | cls holder email body header |

3. cls := ancestor readClassFor: id.

4. (cls = Contact) ifTrue: [

5. email := ancestor readField: ’email’ for: id.

6. email isNil ifFalse: [

7. alias := email regex: ’(.*)@’.

8. host := email regex: ’@(.*)’.

9. self interpret: [

10. holder := Email new.

11. holder alias: alias.

12. holder host: host.

13. holder contact: id.

13.].

14.].

15. self writeClassFor: id value: Contact2.

16. self writeField: ’email’ for: id value: holder.

17.]

18. (cls = AnotherClass) ifTrue: [

19. ...

20.]

21. ...

Figure 4. State transfer—refactoring and usage of the
interpret keyword to switch between levels.

4.5 Mirror
The fact that transformations run at the interpreter level,
outside of any context, implies that one can send messages
only to primitive objects in the transformations. Contex-
tual objects must be manipulated reflectively via a context
with readClassFor:, writeClassFor:value:, readField:for:

and writeField:for:value: as shown in Figure 3. With these
language constructs, a context acts as a mirror [3] that reifies
the state of an object in this particular context. This way,
the state of an object (class or fields) in an arbitrary context
can be updated without subsequent transformations being
triggered, and independently of the active context.

4.6 Interpretation
In complex transformations, it can be necessary to evaluate a
whole block in a given context to manipulate contextual ob-
jects. This can be achieved with aContext interpret: [...],
which will evaluate the block in the given context as if it was
executed at the application level.

Unlike with mirrors, subsequent transformations will be
triggered in this case when contextual objects are modified.
This is necessary in particular to instantiate a new contextual
object from within a transformation. If subsequent transfor-
mations were not triggered, the new object would be missing
representations in other contexts.

The evaluation of do: and interpret: are similar. The
difference between do: and interpret: is that do: expects to
switch from a current context to another and must be called
from the application level, while interpret: must be called
from the interpreter level, and expects that there is no current
context.

Transformations can be more complex than one-to-one
mappings and Figure 4 shows the usage of interpret: in
the case of the refactoring of an email string of the form

Keyword and description
// Creates the causal connection between a context and the runtime
aCtx register

// Evaluate the block in the given context (used from the interpreter level)
aCtx interpret: [...]

// Evaluate the block in the given context (used from the application level)
aCtx do: [...]

// Read a value from a field reflectively
aCtx readField: aFieldName for: aCtxObj

// Write a value to a field reflectively
aCtx writeField: aFieldName for: aCtxObj value: aValue

// Read the class reflectively
aCtx readClassFor: aCtxObj

// Write the class reflectively
aCtx writeClassFor: aCtxObj value: aClass

Table 1. Keywords to manipulate contexts and contextual
objects.

“alias@host” into a dedicated Email holder object with field
alias and host (inspired by a case found in practice [28]).
Code between lines 10–13 runs at the application level in
the context referred by self, and line 10 instantiates a new
contextual object.

4.7 The big picture
Table 1 recapitulates the syntax to deal with contexts and
contextual objects, and Figure 5 visually summarizes the
abstractions presented earlier.

5. Implementation
We report on the implementation of ActiveContext in Pinoc-
chio [31]2, an experimental Smalltalk system designed to
enable invasive changes to the runtime system. Interpreters
are first-class in Pinocchio. The default meta-circular in-
terpreter of Pinocchio can be subclassed to create custom
interpreters and experiment with programming language
variations. Pinocchio is otherwise similar to conventional
Smalltalk systems. It supports in particular the object model
and reflective architecture of Smalltalk 80.

5.1 Implementation Details
Pinocchio represents code as abstract syntax trees, or ASTs.
Code is evaluated by an interpreter that visits nodes of the
AST. The state of a Pinocchio object is stored in slots (first-
class fields), which are represented as AST nodes.

Table 2 shows the relevant visitor methods of the inter-
preter, and indicates which ones were overridden to imple-
ment ActiveContext. The ActiveContext interpreter changes
the way state and memory is managed, in particular the treat-
ment of slots and message sends, whose corresponding visit
methods have been overridden accordingly. Only contextual
objects are treated specially. Primitive objects delegate to
the native memory management of Pinocchio to avoid any
performance overhead. A similar decision was taken for the

2 http://scg.unibe.ch/pinocchio

value="erwann.wernli@iam.unibe.ch"

:String

value="erwann.wernli"

:String

value="iam.unibe.ch"

:String

Root:Context

transformFromAncestor(oid)

transformToAncestor(oid)

Updated:UpdatedContext

aContact:Contact

email

alias

host

alias

host

ancestor

ancestor

Primitive

Updated Root

email

Figure 5. Conceptual overview of the system at run-time. It shows a system with the Root context, the Updated context, three
primitive String objects, and one contextual Contact object. The memory is conceptually divided into three segments, one for
primitive objects, one for the objects’ representation in the Root context, and one for objects’ representation in the Updated
context.

Visitor method Overriden
visitConstant: aConstant ·
visitClassReference: aClassReference ·
visitVariable: aVariable ·
visitSlot: aSlot �
assignVariable: aVariable to: value ·
assignSlot: aSlot to: value �
visitAssign: anAssign ·
visitSelf: aSelf ·
visitSend: aSend �
visitSuper: aSuper �

Table 2. The visitor methods of the interpreter.

Root context, which also delegates to the native memory
management even for contextual objects.

Internally, the interpreter uses several Dictionary in-
stances to implement the memory model for contextual ob-
jects: one dictionary per registered context is created and
maps {object identity, field} to the corresponding value.
A special field class is used for the class of the object. This
implies one level of indirection to access the state of a con-
textual object.

The active context is referenced in a field of the inter-
preter and each thread has a dedicated instance of the in-
terpreter. To distinguish between primitive or contextual ob-
jects, we maintain two pools of references represented in-
ternally with two Sets (this is admittedly a naive approach:
tagging the pointer would be faster).

The set of primitive objects was adapted to match the re-
ality of a fully reflective system. Object, Behaviour, Class,
Metaclass and other special classes needed during bootstrap-
ping cannot be contextual, as they need to exist in order for
the BaseContext class to be defined, so for them to be con-
textual would lead to a chicken-and-egg problem. The same
also holds true for basic, immutable objects like nil, true and
false, as well as numbers, characters, strings and symbols.

The keywords in Table 1 have been implemented with
regular message sends that the interpreter handles in a spe-
cial way.

5.2 Demonstration
To validate our approach, we have implemented a canoni-
cal server-side application that illustrates our approach and
follows the use case of section 3. The application we im-

new send read write

Primitive
Metacircular 191 215 137 137
Root 393 297 215 219
Updated 492 294 217 283

Contextual
Metacircular 192 146 137 200
Root 347 229 292 294
Updated 935 341 259 598

Table 3. Benchmark—Milliseconds for 500 executions of
specific instructions for contextual and primitive objects us-
ing the meta-circular interpreter and the ActiveContext in-
terpreter with one context (Root) and two contexts (Root and
Updated).

plemented is a Telnet server. A client can connect to the
server and run a few simple commands to update a list of
contacts stored in memory. While simpler than a web-based
Content Management system, such a system exhibits com-
parable characteristics in term of design and difficulties with
respect to dynamic updates.

The telnet server was adapted according to step Prepara-
tion in section 3. First, a global variable latestContext was
introduced. Second, the main loop that listens for incoming
TCP connections was modified so that when a new connec-
tion is accepted, the corresponding thread that is spawned to
handle the connection is executed in the latest context. Third,
a client connects to the server and usees special commands
to upload code and “push” an update.

The system can then be bootstrapped and runs initially
in the Root context. An administrator can connect to the
server and use a special command to upload an update. The
classes implementing the logic to process commands can
in particular be changed to change the logic of an existing
command, or to add new ones. All commands executed as
well as their versions are logged in a file. A thread handling
a specific client connection keeps running as long as the
connection is established. Already connected clients that
use the original version are not impacted by the update and
multiple clients connected to the server might see different
versions of the command-line interface.

When a client disconnects, its server-side thread termi-
nates. The system stabilizes eventually when all clients have
disconnected. The log shows the various commands exe-
cuted over the time and the migration of the server from one
version to another.

We benchmarked object creation, message send, field
read and field write for primitive and contextual objects un-
der the three configurations of the system that are described
in Table 3.

The meta-circular interpreter serves as the baseline for
comparison. When running the benchmark with this inter-
preter, contextual and primitive objects are treated in the
same way and results are then similar. When running the
benchmark with the ActiveContext interpreter with solely

the Root context, our implementation delegates to the na-
tive memory for primitive and contextual object. Results for
both kinds of object are in the same range, but slower than
on the meta-circular interpreter due to the overhead of our
interpreter. When running the benchmark with the Active-
Context interpreter and two contexts (Root and Updated),
we perceive a small performance drop for primitive objects,
but a significative performance drop for contextual objects,
notably for operations new and write (in bold in the table).
This can be explained easily: (1) send and read operations
for contextual objects need to look up data in internal dic-
tionaries, and (2) in addition to the lookup in dictionaries,
operations new and write need to trigger transformations to
synchronize the data in the Root context.

Looking at these results, the worst performance drop is
in the range of a factor 5 for contextual object creation (935
ms vs. 191 ms). These results will vary depending on the
structure of the objects, the number of objects created and
maintained in the pool of references, and the number of reg-
istered contexts that need to be synchronized, as well as the
complexity of the transformations. This suffices however to
estimate the maximum performance degradation to one or-
der of magnitude. We believe this performance degradation
can be reduced by a smarter implementation. We consider
this to be a validation of the conceptual contribution and a
positive feasibility study.

5.3 Assessment of ActiveContext
Let us assess ActiveContext according to the safety, time-
liness, and practicality, as we did for vanilla Smalltalk in
section 2:

Safety. Custom state transfer can be specified to transition
from one version to the other. Code running in a given ver-
sion will not produce run-time type errors due to dynamic
updates. Contexts also help address safety that is beyond typ-
ing errors: it provides version consistency. Contexts enable
the atomic installation of co-related changes to class, and
ensure that code running in a context always corresponds to
one precise version of the software.

Timeliness. If the synchronization is performed lazily, the
creation of a new software version entails no overhead, and
it can be used immediately after creation.

Practicality. Contexts are simple abstractions that are easy
to use. They extend the language and do not impose restric-
tions. Writing the transformations manually is extra work,
but it is acceptable if updates are not too frequent, e.g., dur-
ing maintenance phase. The overhead for synchronizing ob-
jects is significant, but it can be dramatically improved by
(1) synchronizing only objects that are actually shared, and
(2) synchronizing lazily.

ActiveContext extends the reflective architecture with
features that enable the update of production system safely.

6. Future work
This paper presents a conceptual model for systems to sup-
port dynamic software updates, as well as a prototype to
demonstrate the soundness of the approach. Several further
points would need to be considered in a full implementation:

Lazy transformation and garbage collection The model
that we have presented and implemented uses eager transfor-
mations: the state of objects is synchronized after each write.
This entails significant overhead for objects whose lifetime
is short, and are never accessed from another context than
the one in which they were created. This also entails high
memory consumption as we keep as many representations
for an object as we have contexts. All context instances are
connected to each other in a list which prevents them from
being garbage collected. With eager transformations, long-
lived objects consume more and more memory and become
slower and slower to synchronize.

More appealing are lazy transformations: instead of syn-
chronizing their state eagerly on write, it is synchronized
lazily on read, in a way similar to how caches work. Not only
would this reduce the performance overhead, but also reduce
memory consumption as only the most up-to-date represen-
tation would be kept in memory. There should be a signifi-
cant overhead only for objects whose structure has changed
and has been accessed from several contexts.

Keeping only the most up-to-date representation assumes
that the transformation is lossless, that is, one representation
can be computed out of another one without loss of data.
This is not always the case, e.g., in case of field addition or
removal with no counterpart in the other context. Such trans-
formations are said to be lossy. One idea would be to track
which transformations are lossy or not, and only keep multi-
ple versions of objects impacted by lossy transformations.

We plan to implement lazy transformations, to distinguish
between lossy and lossless transformations for further opti-
mizations, and to enable garbage collection of unused con-
texts using weak references in our implementation.

Interdependent class evolution The object graph can be
navigated during the transformation, which makes our ap-
proach very flexible to support arbitrary forms of evolu-
tion and interdependent class evolution, as was shown in the
refactoring of Figure 4. Other approaches with similar fa-
cilities to navigate the object graph proved to support most
scenarios of evolution in practice [2, 20, 28]. Keeping sev-
eral versions of objects in memory is necessary until an up-
date has been installed completely [2]. This puts memory
pressure on the system, regardless of whether the transfor-
mations happen lazily or eagerly. One promising aspect of
our approach with bi-directional transformations is that the
old representation can in principle be recovered at any time;
we could avoid keeping multiple representations (at least for
objects subject to lossless transformations) and thus relieve
the memory pressure.

Versioning of class hierarchies In our current implemen-
tation, classes are not contextual objects and this implies
that two versions of a class have distinct names across con-
texts (see line 10 in Figure 3). In a more elaborate imple-
mentation, the same class name could be used and would
resolve to a different representation of the class. The con-
textual class state would include methodDict and super. This
would enable the fine-grained evolution of class hierarchies:
the superclass of a class could differ in two contexts (with-
out the subclass being modified), and conversely, two ver-
sions of a subclass could have different superclasses in two
contexts. Metaclasses could possibly also be contextual but
some classes would need to be primitive and would not be
resolved contextually, for the same reasons that we distin-
guish between primitive objects and contextual objects (see
subsection 4.3).

7. Conclusion
We have presented a novel approach to dynamically update
software systems written in dynamic languages. ActiveCon-
text is a programming model that extends the reflective ca-
pabilities of a dynamic language with first-class contexts to
support the coexistence and synchronization of alternative
representations of objects in memory. With ActiveContext,
existing threads run to termination in the old context while
new threads run in a new context. Program state will even-
tually migrate from the old to the new context, and during
the transition period the state will be synchronized between
contexts with the help of bi-directional transformations. We
showed that ActiveContext is safe, practical, and timely. It
empowers the developer with more control over dynamic up-
dates, and does not require that the system be quiescent to be
updated. We have demonstrated how to build a dynamically
updatable system with a typical use case. The next step is
to introduce lazy transformation and enable garbage collec-
tion, which should improve performance and further reduce
memory consumption.

Acknowledgments
We would like to thank Mircea Lungu, Adrian Lienhard,
Niko Schwarz and Toon Verwaest for kindly reviewing ear-
lier drafts of our paper. We gratefully acknowledge the finan-
cial support of the Swiss National Science Foundation for
the project “Synchronizing Models and Code” (SNF Project
No. 200020-131827, Oct. 2010 - Sept. 2012).

References
[1] A. Bergel. Classboxes — Controlling Visibility of Class Ex-

tensions. PhD thesis, University of Bern, Nov. 2005. URL
http://scg.unibe.ch/archive/phd/bergel-phd.pdf.

[2] C. Boyapati, B. Liskov, L. Shrira, C.-H. Moh, and S. Richman.
Lazy modular upgrades in persistent object stores. SIGPLAN
Not., 38(11):403–417, 2003. ISSN 0362-1340. doi: 10.1145/
949343.949341. URL 10.1145/949343.949341.

[3] G. Bracha and D. Ungar. Mirrors: design principles for meta-
level facilities of object-oriented programming languages.
In Proceedings of the International Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA’04), ACM SIGPLAN Notices, pages 331–344,
New York, NY, USA, 2004. ACM Press. URL http://
bracha.org/mirrors.pdf.

[4] G. Casaccio, D. Pollet, M. Denker, and S. Ducasse. Object
spaces for safe image surgery. In IWST ’09: Proceedings of the
International Workshop on Smalltalk Technologies, pages 77–
81, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-
899-5. doi: 10.1145/1735935.1735948.

[5] S. Cech Previtali and T. R. Gross. Aspect-based dynamic
software updating: a model and its empirical evaluation. In
Proceedings of the tenth international conference on Aspect-
oriented software development, AOSD ’11, pages 105–116,
New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0605-
8. doi: 10.1145/1960275.1960289. URL http://doi.acm.
org/10.1145/1960275.1960289.

[6] H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew. Polus: A
powerful live updating system. In ICSE ’07: Proceedings of
the 29th international conference on Software Engineering,
pages 271–281, Washington, DC, USA, 2007. IEEE Com-
puter Society. ISBN 0-7695-2828-7. doi: 10.1109/ICSE.2007.
65.

[7] M. Denker, T. Gı̂rba, A. Lienhard, O. Nierstrasz, L. Renggli,
and P. Zumkehr. Encapsulating and exploiting change with
Changeboxes. In Proceedings of the 2007 International Con-
ference on Dynamic Languages (ICDL 2007), pages 25–49.
ACM Digital Library, 2007. ISBN 978-1-60558-084-5. doi:
10.1145/1352678.1352681. URL http://scg.unibe.ch/
archive/papers/Denk07cChangeboxes.pdf.

[8] M. Dmitriev. Towards flexible and safe technology for run-
time evolution of Java language applications. In Proceedings
of the Workshop on Engineering Complex Object-Oriented
Systems for Evolution, in association with OOPSLA 2001,
Oct. 2001.

[9] D. Duggan. Type-based hot swapping of running modules. In
Intl. Conf. on Functional Programming, pages 62–73, 2001.

[10] Gemstone. Gemstone/s programming guide, 2007.
URL http://seaside.gemstone.com/docs/
GS64-ProgGuide-2.2.pdf.

[11] A. R. Gregersen and B. N. Jørgensen. Dynamic update of Java
applications — balancing change flexibility vs programming
transparency. J. Softw. Maint. Evol., 21:81–112, mar 2009.
ISSN 1532-060X. doi: 10.1002/smr.v21:2. URL http://
portal.acm.org/citation.cfm?id=1526497.1526501.

[12] D. Gupta, P. Jalote, and G. Barua. A formal framework for
on-line software version change. IEEE Trans. Softw. Eng.,
22(2):120–131, 1996. ISSN 0098-5589. doi: 10.1109/32.
485222. URL http://portal.acm.org/citation.cfm?
id=229583.229586.

[13] S. Herrmann, S. Herrmann, C. Hundt, C. Hundt, K. Mehner,
and K. Mehner. Translation polymorphism in object teams.
Technical report, Technical University Berlin, 2004.

[14] M. Hicks and S. Nettles. Dynamic software updating. ACM
Transactions on Programming Languages and Systems, 27(6):
1049–1096, nov 2005. doi: 10.1145/1108970.1108971.

[15] G. Hjálmtýsson and R. Gray. Dynamic C++ classes: a
lightweight mechanism to update code in a running program.
In Proceedings of the annual conference on USENIX Annual
Technical Conference, ATEC ’98, pages 6–6, Berkeley, CA,
USA, 1998. USENIX Association. URL http://portal.
acm.org/citation.cfm?id=1268256.1268262.

[16] J. Kabanov. Jrebel tool demo. Electron. Notes Theor. Comput.
Sci., 264:51–57, feb 2011. ISSN 1571-0661. doi: 10.1016/
j.entcs.2011.02.005. URL http://dx.doi.org/10.1016/
j.entcs.2011.02.005.

[17] S. Liang and G. Bracha. Dynamic class loading in the Java
virtual machine. In Proceedings of OOPSLA ’98, ACM SIG-
PLAN Notices, pages 36–44, 1998. doi: 10.1145/286936.
286945.

[18] O. L. Madsen and B. Møller-Pedersen. Virtual classes: A pow-
erful mechanism in object-oriented programming. In Proceed-
ings OOPSLA ’89, ACM SIGPLAN Notices, volume 24, pages
397–406, Oct. 1989.

[19] K. Makris and R. A. Bazzi. Immediate multi-threaded dy-
namic software updates using stack reconstruction. In Pro-
ceedings of the 2009 conference on USENIX Annual technical
conference, USENIX’09, pages 31–31, Berkeley, CA, USA,
2009. USENIX Association. URL http://portal.acm.
org/citation.cfm?id=1855807.1855838.

[20] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F. Barnes.
Runtime support for type-safe dynamic Java classes. In
Proceedings of the 14th European Conference on Object-
Oriented Programming, pages 337–361. Springer-Verlag,
2000. ISBN 3-540-67660-0. doi: 10.1007/3-540-45102-1 17.

[21] I. Neamtiu and M. Hicks. Safe and timely updates to multi-
threaded programs. In Proceedings of the 2009 ACM SIG-
PLAN conference on Programming language design and im-
plementation, PLDI ’09, pages 13–24, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-392-1. doi: 10.1145/
1543135.1542479.

[22] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical
dynamic software updating for C. In Proceedings of the
2006 ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’06, pages 72–83, New
York, NY, USA, 2006. ACM. ISBN 1-59593-320-4. doi:
10.1145/1133981.1133991. URL http://doi.acm.org/
10.1145/1133981.1133991.

[23] I. Neamtiu, M. Hicks, J. S. Foster, and P. Pratikakis. Contex-
tual effects for version-consistent dynamic software updating
and safe concurrent programming. SIGPLAN Not., 43(1):37–
49, 2008. ISSN 0362-1340. doi: 10.1145/1328897.1328447.

[24] A. Orso, A. Rao, and M. Harrold. A Technique for Dy-
namic Updating of Java Software. Software Maintenance,
IEEE International Conference on, 0:0649+, 2002. doi:
10.1109/ICSM.2002.1167829. URL http://dx.doi.org/
10.1109/ICSM.2002.1167829.

[25] M. Piccioni, M. Oriol, B. Meyer, and T. Schneider. An
ide-based, integrated solution to schema evolution of object-

oriented software. In ASE, pages 650–654, 2009.
[26] B. Redmond and V. Cahill. Supporting unanticipated dy-

namic adaptation of application behaviour. In Proceedings
of European Conference on Object-Oriented Programming,
volume 2374, pages 205–230. Springer-Verlag, 2002. doi:
10.1007/3-540-47993-7 9.

[27] scala. The scala programming language. URL http://
lamp.epfl.ch/scala/. http://lamp.epfl.ch/scala/.

[28] S. Subramanian, M. Hicks, and K. S. McKinley. Dynamic
software updates: a VM-centric approach. In Proceedings of
the 2009 ACM SIGPLAN conference on Programming lan-
guage design and implementation, PLDI ’09, pages 1–12,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-392-
1. doi: 10.1145/1542476.1542478. URL http://doi.acm.
org/10.1145/1542476.1542478.

[29] E. Tanter. Contextual values. In Proceedings of the 2008
symposium on Dynamic languages, DLS ’08, pages 3:1–3:10,
New York, NY, USA, 2008. ACM. ISBN 978-1-60558-270-
2. doi: 10.1145/1408681.1408684. URL http://doi.acm.
org/10.1145/1408681.1408684.

[30] Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt. Influ-
ence of type systems on dynamic software evolution. CW Re-
ports CW415, Department of Computer Science, K.U.Leuven,
Leuven, Belgium, 2005. URL https://lirias.kuleuven.
be/handle/123456789/131703.

[31] T. Verwaest, C. Bruni, D. Gurtner, A. Lienhard, and O. Nier-
strasz. Pinocchio: Bringing reflection to life with first-
class interpreters. In OOPSLA Onward! ’10, 2010. doi:
10.1145/1869459.1869522. URL http://scg.unibe.ch/
archive/papers/Verw10aPinocchio.pdf.

[32] A. Warth, M. Stanojević, and T. Millstein. Statically scoped
object adaptation with expanders. In OOPSLA ’06: Proceed-
ings of the 21st annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications,
pages 37–56, New York, NY, USA, 2006. ACM Press. ISBN
1-59593-348-4. doi: 10.1145/1167473.1167477.

[33] T. Würthinger, C. Wimmer, and L. Stadler. Dynamic code
evolution for Java. In Proceedings of the 8th International
Conference on the Principles and Practice of Programming
in Java, PPPJ ’10, pages 10–19, New York, NY, USA, 2010.
ACM. ISBN 978-1-4503-0269-2. doi: 10.1145/1852761.
1852764.

IWST 2011 Selected papers

32

Component-based programming

A Smalltalk implementation of Exil, a
Component-based Programming Language

Petr Spacek Christophe Dony
Chouki Tibermacine

LIRMM, CNRS and Montpellier II University
161, rue Ada

34392 Montpellier Cedex 5 France
{spacek,dony,tibermacin}@lirmm.fr

Luc Fabresse
Université Lille Nord de France

941 rue Charles Bourseul
59508 DOUAI Cedex France
luc.fabresse@mines-douai.fr

Abstract
The component-based development paradigm brings various solu-
tions for software reusability and better modular structure of appli-
cations. When applied in programming language context it changes
the way dependencies and connections between software pieces are
expressed. In this paper we present the Smalltalk implementation of
“Exil”, a component-based architecture description and program-
ming language that makes it possible to use component related con-
cepts (ports, interfaces, services, ...) at design and if wished at pro-
gramming time. This proposal enables Smalltalk users to develop
their applications in the component-oriented style.

Categories and Subject Descriptors D.1.0 [Programming tech-
niques]: General—Component oriented programming technique;
D.2.11 [Software Architectures]: Languages—Component Ori-
ented Language

General Terms Component-based Programming

Keywords Component, Inheritance, Architectures, Programming,
Substitutability

1. Introduction
In this work, we consider a software component as a piece of soft-
ware which is a unit of deployment and composition with con-
tractually specified interfaces and explicit dependencies. A compo-
nent interacts with other ones only by well declared communication
channels.

We have designed a programming language where a component
is a basic concept to encapsulate data and functionality in similar
way as an object does, but with respect to component design ideas
such as independence, explicit requirements and architectures. The
goal is to develop a language, in which an expert programmer
can develop independent components, design for reuse [5], and a
non expert programmer can develop applications by connecting
previously developed components, design by reuse [5].

A component can be seen as a black-box which provides func-
tionalities and explicitly expresses what it requires to be able to

[Copyright notice will appear here once ’preprint’ option is removed.]

01 class Compiler {
02 public Parser p;
03
04 public Compiler(Parser p) {}
05 ...
06 }
07 class App {
08 void main(string[] args) {
09 Compiler c = new Compiler();
10 c.p = new SpecialParser();
11 // or Compiler c = new Compiler(new SpecialParser());
12 ...
13 }
14 }

Figure 1. The Compiler class declares Parser attribute, from the
black-box viewpoint, this requirement is hidden to the user

provide them. With OOP, objects usually require some other ob-
jects to be able provide services, for example a compiler class usu-
ally requires a parser, see Figure 1. This dependency is expressed
by the public attribute p and by Compiler’s constructor, see lines 2
and 4 of figure 1). From reuse and deployment point of view, object
dependencies are not very well observable from the outside (except
by using reflective means or somehow by reading a documenta-
tion if there is one). With Component-based programming (CBP),
where component dependencies are explicit, it is clear what the de-
ployment environment will need to provide so that the components
can function, as illustrated on Figure 2, lines 2 and 14.

When a component is connected to another one, generally to
satisfy requirements, this defines a software architecture. A soft-
ware architecture is an overall design of software system [10]. The
design is expressed as a collection of components, connections be-
tween the components, and constraints on how the components in-
teract. Describing architecture explicitly at the programming lan-
guage level can facilitate the implementation and evolution of large
software systems and can aid in the specification and analysis of
high-level designs. For example, a system’s architecture can show
which components a module may interact with, help to identify the
components involved in a change, and describe system invariants
that should be respected during software evolution.

The work we present in this paper aims at proposing a Smalltalk
implementation of a dynamically typed component-based program-
ming language named Exil. Exil is based on Scl [4, 5] and extends
it towards the explicit and declarative expression of requirements
and architectures. It is based on the descriptor/instance dichotomy
where components are instances of descriptors. It also provides an
original inheritance system [9] which is not the scope of this paper.

A Smalltalk implementation of a Component-based Programming Language 1 2011/8/12

ExilHelloerApp

helloer

service hello()

cPrinter : ExilTranscriptPrinter

printer

service print(string)
service clear()

cHelloer : ExilHelloer

helloer printer

service sayHello()

service hello() {
 cHellloer sayHello.
}

service sayHello() {
 printer print: #('Hello World').
}

service print(s) {
Transcript show: s; cr.

}

service clear() {
Transcript clear.

}

Figure 3. Diagram of the architecture of the ExilHelloerApp component

01 component Compiler {
02 require Parser p ;
03 ...
04 }
05 ...
06 component App {
07 provide service main(string[] args);
08
09 internalComponents {
10 Compiler c;
11 Parser p;
12 }
13 connections {
14 connect c.requirements.p to p.default
15 }
16
17 service main(string[] args) {
18 ...
19 }
20 }

Figure 2. Component-oriented languages explicitly express de-
pendencies, i.e. component Compiler require a Parser

The paper is organized as follows. Section 2 proposes an
overview of the Exil component model and programming language.
Section 3 gives some basic clues on the Smalltalk implementa-
tion. Before concluding and discussing the future work, we briefly
present in Section 4 the related work.

2. Exil Overview
This section presents the key concepts and structure of Exil.

In Exil, every component is an instance of a descriptor. A de-
scriptor defines the behavior of its instances by services and their
structure through ports, internal components and connections. The
diagram of a simple descriptor is presented on Figure 3. ExilHel-
loerApp is a descriptor of a component saying hello, the Exil code
of such a component is shown on Figure 4. It defines that the
ExilHelloerApp component will maintain only one provided port
called helloer providing service hello. The architecture of this
component (field internalComponents) declares 2 internal compo-
nents: cHelloer and cPrinter, and in the field internalConnec-
tions it defines how they are connected.

A descriptor may extend another descriptor, such a descriptor
is called a sub-descriptor. A sub-descriptor inherits all ports, in-
ternal components and connection of super-descriptor (its parent),
it may add new ports, new internal components and new connec-
tions or it may specialize them. A sub-descriptor may specialize an
inherited port by modifying its interface. It may specialize an in-
herited internal component by modifying its default descriptor and

finally may specialize connections by combination of connect and
disconnect statements. A sub-descriptor may specialize an in-
herited service. Using classical mechanism of inheritance we do
have common problems such as encapsulation violation between
the components. More over, allowing additional requirements in a
sub-descriptor the substitutability becomes more complicated [9].
However, modeling assets brought by inheritance are one major
cornerstone of the success of object-oriented languages (1) for the
ability it gives developers to organize their ideas on the base of con-
cept classification (a list is a kind of collection, such architecture is
a kind of visitor, ...) which is itself one key of human abstraction
power and (2) for the calculus model introduced by object-oriented
programming that makes it possible to execute an inherited code in
the correct context (the receiver environment). In the off-the-shelf
components context, as pointed by [6], a set of available black-box
components cannot cover all possible scenarios of usage, and there-
fore an adaptation mechanism is needed. Inheritance can be the
mechanism, which enables programmers to easily extend or spe-
cialize such components.

Services A descriptor may introduce services to specify func-
tionality of its instances. When a service is listed in a provided
port description, then the service is public. Each service has
a signature given by the following template: <service-name>
(<argument1-name>, <argument2-name>, ...). A defini-
tion of a service consist of the service keyword followed by the
service signature and a source code written in brackets after the
signature, for example service hello in Figure 4.

The syntax of Exil is a mix of java-like syntax, used for spec-
ifying descriptors, and Smalltalk syntax used for service bodies
implementation - this dichotomy is motivated by the fact that our
language is currently implemented in the Pharo-Smalltalk environ-
ment [1], but we consider java-like syntax more readable and ex-
pressive for structural descriptions.

Components communicate by service invocations through their
ports. A service invocation consists of a port, a selector (the name
of the requested service) and arguments. Arguments are treated as
in Scl, by temporary connections between arguments and ports tem-
porary created for each argument. In case of argument incompati-
bility an exception is thrown.

A component c1 can invoke a service of a component c2 if a
provided port p2 of c2 is connected to a required port p1 of c1. In
this case, the service invocation is emitted via p1 of c1 and received
via p2 of c2. When a component sends a service invocation i via one
of its required ports r, the component checks if port r is connected
to provided port p and if yes, then it transmits i via p, else a does-
not-understood error is thrown.

A Smalltalk implementation of a Component-based Programming Language 2 2011/8/12

component ExilHelloerApp {
provide { helloer->{hello()} }
internalComponents {

cHelloer->ExilHelloer;
cPrinter->ExilTranscriptPrinter;

}

internalConnections {
connect cHelloer.printer to cPrinter.printer

}

service hello() { cHelloer sayHello }
}

Figure 4. Exil code of the ExilHelloerApp descriptor providing
and implementing the hello service and having four internal com-
ponents cHelloer and cPrinter inter-connected by connections
specified in the internalConnections field

Interface An interface in Exil is a named list of service signa-
tures. An interface is created by a statement with the following tem-
plate: interface <interface-name> { <service-signature-1>;
<service-signature-2>; ...}. We have introduced interfaces
in Exil compared to Scl for convenience and reuse purposes. That
means, we want to be able to reuse a list of services, used as a
contract description by one component, as a contract description of
another component.

Port A port is an unidirectional communication point described
by a list of services signatures or by an interface reference (which
makes it possible to reuse such a description) and by a role (re-
quired or provided). A provided port describes what is offered by a
component. A required port describes what is demanded by a com-
ponent. For example, a definition of two provided ports named A
and B looks like: provide {A->{service1()}; B->ISecond},
where the A port provides a service called service1 and the B port
is described by an interface ISecond.

Connection A connection between two components is performed
by a connection between their ports. A descriptor lists all connec-
tions in the field internalConnections. A connection is specified by
a statement described by the template
connect <an-emittor-port-address> to
<a-receiver-port-address>. By the port-address it is meant
the expression <component-name>.<port-name>, for example
see the field internalConnections in Figure 4. A component
can act as an adapter between various other components and then,
it is called a connector.

Internal component A component can own internal components.
Such a component is then called a composite. The owning compo-
nent references an internal component by a variable.

A list of internal components is defined in the descriptor’s field
internalComponents, see Figure 4. The Exil code of the cHelloer
internal component is in Figure 5. Internal components are ini-
tialized during instantiation of the owning composite. By default
all internal components are initialized with NilComponent com-
ponent, a developer should implement an init service or op-
tionally may specify a default descriptor in the internal compo-
nents list, i.e. use the following statement internalComponents
{cPrinter->Printer}, which is equivalent to the cPrinter :=
Printer new. line in the init service.

An internal component is encapsulated by the owning compos-
ite and it is not accessible from outside of the composite. Services
defined by a composite can use internal components to implement
a desired behavior (service invocation redirect).

component ExilHelloer {
provide { helloer->{sayHello()} }
require { printer->{print(string); clear()} }

service sayHello() {
printer print: #(’Hello World’).

}
}

Figure 5. Exil code of the ExilHelloer descriptor providing and
implementing the sayHello service and requiring services print
and clear via required port printer.

3. Implementation
Exil is implemented in the Pharo Smalltalk environment [1] as an
extension of Scl. We chose Smalltalk because of its reflective ca-
pabilities, which are necessary for mechanisms like the service in-
vocation mechanism. And we chose Pharo environment for its rich
set of support tools and frameworks like PetitParser [8] framework
or Mondrian [7], which we use or will use for the Exil implemen-
tation.

The Exil implementation contains core classes representing Exil
component model, then there are parser and compiler classes re-
sponsible for source code processing and classes implementing
Exil GUI shown on Figures 6 and 7.

3.1 Parser & Compiler
Exil has custom syntax and therefore a special parser is required.
We use PetitParser framework base for our parser which is rep-
resented by the ExilParser class, which inherits ExilGrammar
class and extends it with AST building code. We have chosen Pe-
titParser framework, because it allows us to maintain Exil grammar
as easily as common Smalltalk code and because we can smoothly
compose it with the PetitSmalltalk parser. The PetitSmalltalk parser
is used for service bodies parsing. The result of our parser is an AST
made from subclasses of the ExilParseNode class.

ExilCompiler transform the AST made by the parser to Exil
core classes representation. The compiler is designed as a visitor of
AST nodes.

3.2 Core
In our proposal, we use Smalltalk classes to implement component
descriptors. All classes implementing component descriptors are
subclasses of the base class called ExilComponent, the base class
the mechanism to store information about provided and required
ports, internal components and their interconnections contains in
the class-side. This information is used at instantiation time by de-
scriptors (initialization methods) to create components (descriptors
instances).

Internally, for each port and each internal component, an in-
stance variable is created in the class implementing the descriptor
to hold references to port instances and internal components in-
stances. Ports are implemented as objects. There is one class hier-
archy for provided ports and one for required ports, all of them are
subclasses of ExilPort base class. Ports are described by inter-
faces, which are implemented by arrays or by classes.

An interface is implemented as an array of service signatures.
When an interface is defined as the named interface, for exam-
ple interface IMemory { load(); save(data); }, then the
IMemory sub-class of the class ExilInterface with methods
load and save data: is created. These methods are having empty
bodies. A sub-interface is then implemented as a sub-class of the
class representing its parent.

Services are represented by methods. An automatic (and trans-
parent for the user) mapping of a service signature from Exil to

A Smalltalk implementation of a Component-based Programming Language 3 2011/8/12

Figure 6. Exil GUI

a Smalltalk’s method selector is based on naming convention, for
example service signature sum(numberA,numberB) is mapped
into a Smalltalk method with selector sum numberA:numberB:.
Since service bodies are written in Smalltalk, a call of the sum
service performed in a body of an another service looks like
<receiver> sum:{ 1. 2 }. The call is automatically dispatched
to sum numberA:numberB: method, according to parameters ar-
ity.

For each internal component and port there is an instance
variable having the same name. Information about ports and as-
sociated interfaces or about default descriptors of internal com-
ponents are stored as class side methods which return an ar-
ray of associations, i.e. pairs of port name (resp. internal com-
ponent name) and interface (resp. descriptor). Connections are
stored similarly, as a class-side method which returns an array
of associations. An association is a pair of port-addresses. We
call these methods the description methods. For example the
ExilHelloerApp descriptor shown in Figure 4 is implemented as
a sub-class of the ExilComponent class named ExilHelloerApp
having 3 instance variables, one named helloer representing
the port helloer and two others representing internal compo-
nents cHelloer, cPrinter and named in the same way as the in-
ternal components. The ExilHelloerApp metaclass implements
four description methods called providedPortsDescription,
requiredPortsDescription, internalComponentsDescription
and connectionsDescription. Source code of the class is in
Figure 8.

3.3 Inheritance implementation
A sub-descriptor is implemented as a sub-class of the class rep-
resenting its super-descriptor. All these specializations are imple-
mented as modifications of the description methods.

A service specialization is equal to the method overriding in
Smalltalk. When a sub-descriptor specialize an inherited service,
the corresponding method is then overridden in the sub-class real-
izing the sub-descriptor.

ExilComponent subclass: #ExilHelloerApp
instanceVariableNames: ’helloer cHelloer cPrinter’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Exil-Examples-Helloer’.

!

ArithEvaluator class>>providedPortsDescription
^ #(#helloer->#(#hello)).

!
ArithEvaluator class>>requiredPortsDescription

^ #().
!
ArithEvaluator class>>internalComponentsDescription

^ #(#cHelloer->ExilHelloer #cPrinter->ExilTranscriptPrinter).
!
ArithEvaluator class>>connectionsDescription

^ #((#cHelloer->#printer)->(#cPrinter->#printer).
!

Figure 8. The ExilHelloerApp class implementing the
ExilHelloerApp descriptor showed in Figure 4.

Service invocations Service invocations, in the context of inher-
itance, fully benefits from Smalltalk’s message sending system.
When a port receives a service invocation which is valid according
to the contract specified by the interface of the port, it translates the
service signature into a Smalltalk selector and the standard method
look-up is performed. Since descriptors and sub-descriptors are re-
alized by classes and subclasses, not extra mechanism is needed,
the standard method look-up works perfectly.

Substitution and initialization/compatibility support Exil users
are responsible for the init method implementation of a descriptor
to achieve dependency injection, that is to say, for initializing vari-
ables referencing internal components used in the internal archi-
tecture. The first support comes in case when a sub-descriptor has
an additional required port. Then our inheritance system automati-
cally generates two new class instantiation methods (and two corre-
sponding init methods, not described here), one newCompatible
without parameter and newCompatible: having as unique param-

A Smalltalk implementation of a Component-based Programming Language 4 2011/8/12

Figure 7. Component classes in browser

eter an array of pairs port-component. The first one is able to create
an instance, compatible for substitution with instances of super-
descriptors, for which all additional requirements are satisfied by
connections to default instances of the required component. The
second one does the same thing but uses its argument for connect-
ing additional required ports.

The second support is a method to achieve substitutions safely.
Substitution is achieved by a method replace:with: on instance-
side of the base class ExilComponent. This method takes two ar-
guments, the first one is the name of the internal component vari-
able referencing the component which should be replaced and the
second argument is the replacement component. replace:with:
checks for original and replacement components descriptors com-
patibility then it checks if all requirements would be satisfied after
substitution. If the descriptor of the new component is compatible
with the descriptor of the original one and if all requirements of
the new component are about to be satisfied, the replacement is
performed otherwise an exception is thrown. replace:with: re-
connects all ports of the original component to corresponding ports
of the new component and change internal component reference of
the composite to reference the new component.

Readers can download a Pharo image of Exil implementation
here: http://www.lirmm.fr/∼spacek/exil/

4. Related work
We give in this section an overview of existing component models
implemented on top of Smalltalk, and discuss their limitations.

CLIC Clic [2], an extension of Smalltalk to support full-fledged
components, which provides component features such as ports, at-
tributes, or architecture. From the implementation point of view,
it fully relied on Smalltalk reflective capabilities. Thus, from the
Smalltalk virtual machine point of view, CLIC components are ob-
jects and their descriptors are extended Smalltalk classes. Because
of this symbiosis between CLIC and Smalltalk, the use of CLIC
allows taking benefit from modularity and reusability of compo-

nents without sacrifice performance. CLIC model allows compo-
nents to have only one provided port. The idea of a single provided
port is based on the observation that developers do not know be-
forehand, which services will be specified by each required port of
client component. Therefore it is hard to split component function-
ality over multiple ports. CLIC also support explicit architecture
description and inheritance. It does not need any additional parser
or compiler.

FracTalk FracTalk1 is a Smalltalk implementation of the Fractal
hierarchical component model [3]. In FracTalk, a primitive compo-
nent is implemented as a plain object. As in Exil, every port is im-
plemented as a single object in order to ensure that every port allow
invoking only declared operations. Therefore, a single component
materializes as multiple objets. In opposite to Exil, the description
of a component is scattered over multiple classes. A component in
FracTalk is described by implementation class and factory class.
Another limitation of FracTalk is the the difficulty to make use
of Smalltalk libraries. Smalltalk objects aren’t full fledged compo-
nents since they do not have a membrane and then does not provide
expected non-functional ports. Therefore, the only mean to use a
Smalltalk object in a FracTalk application is to encapsulate it in the
content of some component.

5. Conclusions
In this paper, we propose a Smalltalk implementation for a dynamically-
typed component-based language. The language brings benefits of
the component-paradigm closer to the Smalltalk users and it also
provides solid soil for experiments in component software area.
Exil allows programmers to express architectural structure and
then seamlessly fill in the implementation with Smalltalk code,
resulting in a program structure that more closely matches the
designer’s conceptual architecture. Thus, Exil helps to promote

1 http://vst.ensm-douai.fr/FracTalk

A Smalltalk implementation of a Component-based Programming Language 5 2011/8/12

effective architecture-based design, implementation, program un-
derstanding, and evolution.

We plan to work in the near future on the integration of our pre-
vious work on architecture constraint specification and architecture
description structural validation [11, 12]. In this way, we can spec-
ify conditions on the internal structure of a component (its internal
components and connections between them) or on its ports. This
will help developers in better designing their systems by making
more precise architecture descriptions. There are here some inter-
esting issues that we foresee to study, as for example, architecture
constraint inheritance.

In the future, we would like to switch from Smalltalk syntax
used for services implementation to Ruby syntax, which is more
similar to the syntax used for component structure description.
For this purposes we would like to port SmallRuby2 project into
Pharo and develop Ruby parser using PetitParser [8] framework.
We are also interested in visual programming and we plan to use the
Mondrian [7] framework to enhance our user interface with auto-
generated component/architecture diagrams.

References
[1] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and

M. Denker. Pharo by Example. Square Bracket Associates, 2009.
ISBN 978-3-9523341-4-0. URL http://pharobyexample.org.

[2] N. Bouraqadi and L. Fabresse. Clic: a component model symbiotic
with smalltalk. In Proceedings of the International Workshop on
Smalltalk Technologies, IWST ’09, pages 114–119, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-899-5.

[3] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani.
The fractal component model and its support in java: Experiences with
auto-adaptive and reconfigurable systems. Softw. Pract. Exper., 36:
1257–1284, September 2006. ISSN 0038-0644. doi: 10.1002/spe.
v36:11/12. URL http://portal.acm.org/citation.cfm?id=
1152333.1152345.

[4] L. Fabresse. From decoupling to unanticipated assembly of compo-
nents: design and implementation of the component-oriented language
Scl. PhD thesis, Montpellier II University, Montpellier, France, De-
cember 2007.

[5] L. Fabresse, C. Dony, and M. Huchard. Foundations of a sim-
ple and unified component-oriented language. Comput. Lang. Syst.
Struct., 34:130–149, July 2008. ISSN 1477-8424. doi: 10.1016/j.cl.
2007.05.002. URL http://portal.acm.org/citation.cfm?id=
1327541.1327717.

[6] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1995. ISBN 978-0-201-63361-0.

[7] M. Meyer and T. Gı̂rba. Mondrian: Scripting visualizations. Eu-
ropean Smalltalk User Group 2006 Technology Innovation Awards,
Aug. 2006. URL http://scg.unibe.ch/archive/reports/
Meye06cMondrian.pdf. It received the 2nd prize.

[8] L. Renggli, S. Ducasse, T. Gı̂rba, and O. Nierstrasz. Practical dy-
namic grammars for dynamic languages. In 4th Workshop on Dy-
namic Languages and Applications (DYLA 2010), Malaga, Spain,
June 2010. URL http://scg.unibe.ch/archive/papers/
Reng10cDynamicGrammars.pdf.

[9] P. Spacek, C. Dony, C. Tibermacine, and L. Fabresse. Reuse-oriented
inheritance in a dynamically-typed component-based programming
language. Technical report, LIRMM, University of Montpellier 2, May
2011.

[10] C. Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2nd edition, 2002. ISBN 0201745720.

2 https://swing.fit.cvut.cz/projects/smallruby

[11] C. Tibermacine, R. Fleurquin, and S. Sadou. A family of languages
for architecture constraint specification. In the Journal of Systems and
Software (JSS), Elsevier, 83(5):815–831, 2010.

[12] C. Tibermacine, S. Sadou, C. Dony, and L. Fabresse. Component-
based specification of software architecture constraints. In Proceed-
ings of the 14th International ACM SIGSOFT Symposium on Com-
ponent Based Software Engineering (CBSE’11), Boulder, Colorado,
USA, June 2011. ACM Press.

A Smalltalk implementation of a Component-based Programming Language 6 2011/8/12

Klotz: An Agile 3D Visualization Engine

Ricardo Jacas Alexandre Bergel
Pleiad Lab, Department of Computer Science (DCC),

University of Chile, Santiago, Chile
ricardo.jacas@gmail.com http://bergel.eu

ABSTRACT
Klotz is an agile 3D visualization engine. Visualizations

are produced from an arbitrary model described in terms of

objects and interconnections. Any arbitrary model may be

visualized. Klotz uses a semi-descriptive scripting language

to easily and interactively build visualizations.

Klotz, on its current version, offers four layouts to easily

exploit the third dimension when visualizing data.

Klotz is entirely implemented in Pharo. The engine is fully

based on the facilities offered by Morphic.

1. INTRODUCTION
Visual displays allow the human brain to study multiple

aspects of complex problems in parallel. Visualization, ”al-

lows for a higher level of abstract, a closer mapping to the

problem domain” [3].

Numerous frameworks have been offered by the Smalltalk

community to visualize data. Mondrian
1

[1], one of them,

is a flexible and agile visualization engine that uses a two

dimensional representation to visualize data.

We are building on the experience we gained with Mondrian

by proposing a new visualization engine that adds a third

dimension to the graphical representation. Klotz applies the

main features of Mondrian, namely the scripting language

and the interactive easel, to a new rendering engine.

Contrary to other Smalltalk 3D visualization engines (Lu-

mière[2], Jun
2
), Klotz does not rely on OpenGL or any exter-

nal libraries. The generation of 3D graphics is solely based

on Morph facilities. The benefits are numerous, including

ease of installation and multi-platform support.

The paper is structured as follows: Section 2 presents the

essential characteristics of Klotz. It progressively presents

Klotz’ features by giving short and concise illustrative scripts.

Section 3 briefly describes the main points of Klotz imple-

mentation and gives some benchmarks. Section 5 concludes.

1http://www.moosetechnology.org/seaside/pier/tools/
mondrian
2http://aokilab.kyoto-su.ac.jp/jun/index.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

2. KLOTZ
2.1 Klotz in a nutshell

Klotz is an agile 3D visualization engine. Visualizations are

made of cubes and lines. Contrary to other 3D visualization

frameworks available on Smalltalk, Klotz maps each graphical

element to an object that belongs to an user-defined domain.

The visual dimensions of a graphical element is the result of

applying metrics on the visualized domain.

Klotz’ objective is to offer a flexible and agile tool to

visualize any arbitrary domain expressed in terms of objects

and relations without any prior preparation. Visualizations

are described by means of a scripting language. Consider the

illustrative script:

1 | subclasses |
2 subclasses := Magnitude subclasses.
3 view nodes: subclasses.
4 view applyLayout: KLSphereLayout new.
5

6 view node: KLEaselCommand using: (KLCube new
fillColor: Color green).

7 view edges: subclasses from: #yourself to:
#superclass.

Line 1 defines a temporary variable subclasses. The

variable is initialized in Line 2 with the all the subclasses of

the class Magnitude. Line 3 adds the objects referenced by

subclasses into the view. Each of the subclass of Magnitude
is represented by a cube. Line 4 positions each cube on an

invisible sphere.

Line 6 adds a new node, Magnitude, the root of the class

hierarchy. The node is colored in green. Line 7 adds as

many edges there are elements in the variable subclasses.
For each subclass, an edge is drawn from the subclass to its

superclass, Magnitude. The result is depicted in Figure 1.

Klotz is intended to be suplementary 3D version of Mon-

drian, its graphic engine is not based on it tought, but built

from the ground. The interface is as similar as it can be

to Mondrian’s, but its intention is not to bring the same

visualizations to 3D figures, but to add new means to analyse

code on another perspective, with another dimention to add

more information on the object representation itself.

Agility of Klotz is expressed via an easel to interactively

“compose” a visualization (Figure 2). The lower part contains

the scripts what is entered by the user. The upper part con-

tains the visualization generated by the script interpretation.

2.2 Scripting visualizations with Klotz
The Klotz scripting language is plain Smalltalk code. Each

script is based on 4 principles:

Figure 1: Magnitude subclasses.

• Elements composing the visualization are represented

as nodes. Each node may have a shape and color that

reflect some characteristics of the represented node.

• Relations between elements are represented with edges.

The color and width of a shape depend on some arbi-

trary characteristics of connected objects.

• Elements may be ordered using layouts. A layout may

use edges to direct the ordering.

• Containment is expressed with a view, an object that

enables the construction of the visualization by offering

numerous methods.

The scripting language supports 4 different ways of defining

nodes. The message node: creates an individual node using

some default visual properties (colored in blue, thin black

border line). A variant of it is nodes: to add multiple nodes

in one single instruction. The script

view node: Magnitude.
view node: Number.
view node: Time

is equivalent to

view nodes: { Magnitude. Number . Time}

The result is shown in Figure 3.

The visual representation may be particularized according

to some characteristics of the provided nodes. The message

node:using: and nodes:using: allow graphical cube to be

customized with metrics computed on the represented model.

Consider the example, depicted in Figure 4:

view nodes: Magnitude subclasses using: (KLCube
new height: #numberOfInstanceVariables)

The message numberOfInstanceVariables is sent to each

of Magnitude’s subclasses. The result of numberOfInstance-
Variables defines the height of the node.

The methods edge:from:to: and edges:from:to: use de-

fault black and thin line shape offered by the view. Figure 5

shows the result of the script:

Figure 2: The Klotz Easel

Figure 3: Magnitude, Number and Time.

view nodes: Magnitude subclasses.
view edges: (Magnitude subclasses) from: #yourself

to: MetacelloVersionNumber

The message edges: domain from: fromSelectorOrBlock

to: toSelectorOrBlock constructs an edge for each element

of the domain. The source code is the result of evaluating

fromSelectorOrBlock on the considered node and the target

is obtained by evaluating toSelectorOrBlock. One-arg blocks

and symbols are equally accepted.

2.3 The third dimension
Visualizations in third dimensions convey a “feeling of

immersion” that Klotz is intensively exploiting. A number

of tools and options are offered by either the visualization or

the easel.

Light intensity.
A visualization contains one unique light, a white light

located at the same position than the camera. The light

intensity on a face is at its maximum when the face is or-

thogonal to the camera. When a surface of the face is close

to be lined up with a light ray, the face is dark.

Emphasizing the perspective.
Perspective is the way a solid object is drawn on a two-

dimensional surface so as to give the right impression of their

height, width and depth. Our experience shows that it is

difficult to precisely compare element positions when closely

Figure 4: Magnitude subclasses, the heights shows
the number of instance variables.

Figure 5: Basic edges

located from each other. Perspective may be emphasized

thanks to an increase and decrease perspective commands

offered by the easel.

non-emphasized perspective emphasized perspective

Figure 6: Emphasizing the perspective

Figure 6 illustrates this situation with a slight variation in

the perspective.

Controlling the camera.
A user looks at a visualization through the view camera.

The easel offers six commands to rotate and move the camera

along every axis.

Layout.
Nodes are ordered using a layout. The default layout that

is used when no other is specified is the horizontal line layout.

A layout is specified using the message applyLayout:. Four

additional layouts are available: cube layout, sphere layout,

block layout, and scatterplot layout.

Cube Layout : This layout orders the nodes in a three-

dimensional cube.

view
nodes: Magnitude withAllSubclasses
using: (KLCube new width:
#numberOfInstanceVariables).

view applyLayout: (KLCubeLayout new).

Sphere Layout : nodes are located on the surface of a sphere,

centered on the center of the view. The following example

places all the subclasses of Magnitude on a sphere (Figure 8):

Figure 7: Cube Layout

Figure 8: Sphere Layout

view nodes: Magnitude subclasses.
view applyLayout: KLSphereLayout new.

view
node: Magnitude
using: (KLCube new fillColor: Color green).

view
edges: Magnitude subclasses
from: #yourself
to: #superclass.

Block Layout : nodes are hierarchically grouped and or-

ganized on a surface. Each group is uniquely colored. The

assigned color is randomly chosen if none is specified in the

shape.

The following script visualizes the structure of Klotz (Fig-

ure 9):

Figure 9: Block Layout

| shape packages block |
shape := KLCube new

height: #numberOfInstanceVariables.
packages :=

PackageInfo allPackages
select: [:pak | pak packageName

matches: 'Klotz-*'].

block := KLBlockLayout new.
packages do: [:pak |

block with:
{view nodes: pak classes using: shape }].

view applyLayout: block

The script gives a randomly chosen color to each package

of Klotz. The color is used to paint the classes of each

package. Each node is a colored class. The height represents

the number of attributes.

Scatterplot layout : nodes may be located on a three di-

mensional Cartesian. Each node has a 3d coordinate that is

determined from applying three metric on the represented

model. The following script plots each class of the Klotz-

Kernel package along its number of attributes, number of

methods (Figure 10):

view nodes:
((PackageInfo named:'Klotz-Kernel') classes).

view applyLayout:
(KLScatterCubeLayout new

"blue line"

x: [:cls | cls numberOfLinesOfCode / 1000];
y: #numberOfInstanceVariables; "red line"

z: #numberOfMethods) "green line"

3. IMPLEMENTATION
Klotz is freely available from http://squeaksource.com/

Klotz.html
The current version of Klotz, yet not optimized, provides

support up to 1000 nodes on screen, as well as, 1000 edges

between these nodes.

As shown in Figure 11, the time taken for the easel to

render a scene with the default horizontal line layout is almost

proportional with the quantity of nodes and edges.

On Figure 12 illustrates the linear resource taken by the

layouts.

The Klotz graphic engine its based on the construction

Figure 10: The Klotz Kernel Package

� �

� �� �� �� �� �� ��
�

��

��

��

��

��

��

�	
�����	��

����������	�

����������	������������

����������������������

�!
�
�"
!
�
#

Figure 11: Benchmark (quantity vs time[ms]) for
few nodes/edges

of polygons that are later rendered as regular 2D Morphs.

These polygons vertices are calculated using tridimentional

vectors with absolute coordinates, and using matrices to pro-

duce each transformation (from zooming to the perspective

transformation into 2D points). The 3D shapes are also

basically optimised, the hidden faces (calculated to some

point by need) are not rendered. These calculations, easy

as they sound, are often troublesome since calculation for

coordinates requires decent, and fast, calculations that some-

times can show perfectly reasonable results in theory (like a

point located on the infinity) that must be taken care with

proper aproximations, wich must also fix the not accurate

aproximations made by the Integer/Float classes.

The Klotz graphic generation solely uses Morph facilities.

The most common approach to visualize 3D graphics is to

use OpenGL, a reference in the field. We deliberately decided

to not use OpenGL for a number of practical reasons:

• OpenGL is distributed as a set of natives libraries, de-

pending on the operating system. Libraries are accessed

within Pharo using FFI or Alien, two technologies that

interoperate with native libraries. Unfortunately, the

recent advances with the Pharo virtual machine sig-

nificantly reduced the usability of accessing external

libraries.

• The visualizations produced with Mondrian rarely go

� �

� ���� ���� ���� ���� ���� ���� ����
�

����

����

����

����

����

����

����

	
������
�

����������
�

	���������
����������

����� ��������������

!
�"

�
#
"

�
$

Figure 12: Benchmark (quantity vs time[ms]) for
lots of nodes/edges

over 2,000 nodes and 1,000 edges. It is reasonable

to expect similar figure as the upper limit for Klotz.

OpenGL enables sophisticated rendering, including a

high number of rendered polygons and advanced light

composition. We do not expect to have such a need in

a close future.

Basing Klotz on OpenGL is clearly on our agenda. For

this, Alien needs to gain stability, especially with the Pharo

JIT virtual machine (Cog).

4. RELATED WORK

4.1 Lumiere
Lumiere [2] is a 3D Framework,that applies a stage metaphor.

This metaphor implies that all graphics are produced by cam-

eras taking pictures of 3D shapes lit by the lights of the stage.

A stage provides the setting for taking pictures of a com-

position of visual objects we call micro-worlds. Lumiere’s

objective is to implement a 3D graphical support to Pharo

programmers, at a high level of abstraction. This framework

uses OpenGL. As mentioned before, this libraries are entirely

dependent of the OS and the right native OpenGL packages

within the machine itself, to be used.

On the other hand, Klotz do not represent a competitor on

that matter, Klotz is a 3D code visualization engine, its goal

is not focus on the actual quality of the graphic interface,

but on the expressiveness of the representation in order to

achieve a better comprehension of the code. Right now Klotz

graphical interface is a small engine that is completely based

on the Morph engine. This does not mean to be the final

core, eventually the system will need an external graphic

engine, probably based on OpenGL, and that can also be

Lumiere itself.

4.2 CodeCity
CodeCity [4] is a full fledged city metaphor environment,

for code analisys. Its visualization is based on this metaphor,

and its metrics are entirely defined (and chosen carefully)

to faithfully explain software code. This concrete approach

intends to focus not only on the visualization itself, but in

the analysis of software evolution. It also support reverse

engineering.

CodeCity is programmed in VisualWorks Smalltalk on top

of the Moose platform. Just like Lumiere, it uses OpenGL

for rendering.

When it comes to Klotz, not been as expressive as Codecity,

eventually, and depending on the programer’s skills, it can

implement most aspect of its model.

5. CONCLUSION
Klotz is an agile three-dimensional visualization engine.

Klotz visualizes a graph of objects, without any preparation

of the objects. Klotz modeling system allows one to change a

graph definition easily, making it simple and fast to adjust a

desired visualization. Been based on any object as the items

represented on the node it gives great dynamism to the kind

of visualization that it can provide. As future work, we plan

to:

• Implement drag-and-drop support to manage the nodes

easily.

• Add an interface to see the information within the node

on mouse focus, and change it dynamically.

• Optimize and improve the graphical libraries, if possible,

change to a stable, OpenGL based library.

• Add lots of new Layouts, and with time, other figures

to use as nodes.

Acknowledgment.
We thank Patricio Plaza for his effort and participation

on an early version of Klotz.

6. REFERENCES
[1] Michael Meyer, Tudor Gı̂rba, and Mircea Lungu.

Mondrian: An agile visualization framework. In ACM

Symposium on Software Visualization (SoftVis’06),

pages 135–144, New York, NY, USA, 2006. ACM Press.

[2] Fernando Olivero, Michele Lanza, and Romain Robbes.

Lumiére: A novel framework for rendering 3d graphics

in smalltalk. In Proceedings of IWST 2009 (1st

International Workshop on Smalltalk Technologies),

pages 20–28. ACM Press, 2009.

[3] Marian Petre. Why looking isn’t always seeing:

Readership skills and graphical programming.

Communications of the ACM, 38(6):33–44, June 1995.

[4] Richard Wettel and Michele Lanza. Codecity: 3d

visualization of large-scale software. In ICSE Companion

’08: Companion of the 30th ACM/IEEE International

Conference on Software Engineering, pages 921–922.

ACM, 2008.

IWST 2011 Selected papers

44

A programming environment supporting
a prototype-based introduction to OOP

Carla Griggio† Germán Leiva‡† Guillermo Polito‡† Gisela Decuzzi† Nicolás Passerini‡†
†Universidad Tecnológica Nacional (UTN) – Argentina ‡Universidad Nacional de Quilmes (UNQ) – Argentina

{carla.griggio | leivagerman | guillermopolito | giseladecuzzi | npasserini}@gmail.com

Abstract
This paper describes the features that a programming environment
should have in order to help learning the object-oriented program-
ming (OOP) paradigm and let students get the skills needed to build
software using objects very quickly. This proposal is centered on
providing graphical tools to help understand the concepts of the
paradigm and let students create objects before they are presented
the class concept [14]. The object, message and reference concepts
are considered of primary importance during the teaching process,
allowing quick acquisition of both theory and practice of concepts
such as delegation, polymorphism and composition [7]. Addition-
ally, a current implementation of the proposed software and the ex-
perience gained so far using it for teaching at universities and work
trainings. Finally, we describe possible extensions to the proposed
software that are currently under study.

Categories and Subject Descriptors K.3.2 [Computer and In-
formation Science Education]: computer science education, in-
formation systems education; D.3.2 [Language Classificationss]:
object-oriented languages; D.3.3 [Language Constructs and Fea-
tures]: classes and objects, inheritance, polymorphism

General Terms Experimentation, Human Factors, Languages

Keywords Educational programming environments, object-oriented
programming, teaching methodologies, prototype-based, objects
visualization

1. Introduction
Frequently, in introductory courses to OOP, students have prior
experience in structured programming. This is often counter-
productive when understanding some of the basic concepts of the
OOP paradigm, such as the relationship between a class and its
instances, the difference between object and reference, delegation
and polymorphism [16]. In order to minimize this difficulty, a pos-
sible strategy is to postpone the introduction of the class concept.
This reduces the set of concepts needed to build programs [7].

Similiar difficulties appear in students who do not have prior
knowledge in programming at the time of learning OOP, and spe-
cially in those cases it is convinient to bring down any complexity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ESUG ’11 August 22nd 2011, Edimburgh.
Copyright c� 2011 ACM [to be supplied]. . . $10.00

that a language might have in order to understand the ideas the
paradigm proposes [15].

We propose to provide the student a reduced and graphical
programming environment in which the object and the message are
the central concepts instead of defining classes and then instantiate
them. Moreover, it has to offer facilities to understand the concepts
of environment, state and garbage collection. This tool is meant
to make the first steps before getting into a full featured language
and IDE, where concepts like class and inheritance can be properly
learned once the basics are settled down.

2. Proposed programming environment
In this section we describe the features for a programming envi-
ronment which helps our objectives, stating which common learn-
ing difficulties have to be prevented when introducing the OOP
paradigm to students.

2.1 Multiple object environments - lessons
In order to introduce the concept of object environment we propose
using lessons: an object environment associated to a group of ob-
jects, the references pointing to them, a workspace to interact with
them and an object diagram. Lessons should be independent from
each other; none of the elements mentioned above should be shared
between different lessons.

The use of lessons also aims to help students organize their work
and let the teacher offer environments with pre-existing objects as
scenarios for excercises.

2.2 Defining and using objects
We believe that a visual tool to create objects allows the student to
build programs focusing on object use instead of object creation
at the first stages of the learning process. We propose to work
with a simplified prototype oriented environment [8, 17], where the
objects contain their own methods without the need of classes; and
the creation of objects, attributes and methods is performed through
a visual approach. This simplified object-oriented programming
environment allows students to build programs in a very early stage
of the course with many collaborating objects and making use of
polymorphism.

Since the proposed environment lacks the concepts of classes
or inheritance, the reuse of code is achieved by cloning objects.
The cloning mechanism is simpler than those found in Self [13] or
Javascript [17]. In those languages, tipically a prototypical object
is divided in two parts, one containing the behavioral slots, which
will be shared as a parent object among all the cloned objects,
and another part containing the “state” slots, which must be cloned
every time a new object is created. In our proposal, the same object
servers the two purposes:

• the new object has the same internal structure as the original
one.

• the new object has the cloned one as delegate. This means that
the new object inherits all of the behaviour of the original one,
but also it can override its behaviour by defining methods with
the same name.

This simplified prototype approach enables code sharing mecha-
nisms and facilitate the introduction of classes and inheritance in
a later stage of the course based on a more classical view of the
object-oriented paradigm.

To improve the student’s programming experience, the environ-
ment should provide ready-to-use basic prototype objects such as
numbers, booleans, collections and dates; in order to do more com-
plex exercises the environment could also include networking, per-
sistency and graphical user interface objects.

2.3 Objects and References
Students often confuse objects and references, believing they are
the same. References are taught as a directed relation between
two objects, or -as an exception- a workspace and an object. We
emphasize these relations are mutable using diagrams to show the
interaction between objects.

In order to make the difference clearer, our proposal is to sep-
arate the addition of a new object to the environment in two steps.
The first step is to create an object. In the second step we associate
a reference to it; this can be done by creating a new reference or
by redirecting an existing reference. The association between the
object and the reference could be done graphically using the object
diagram.

This explicit separation between the created object and a ref-
erence pointing to it, improves the understanding of the difference
between both concepts. Once established that difference, assign-
ments could be used by the students without fear.

2.4 Object Diagram
A lesson should provide its own object diagram, where one can
appreciate visually the relationship between living objects in that
lesson’s environment. This tool makes it easier to get a clearer
distinction between the concept of object and reference, and helps
to comprehend the state of the environment of the lesson at a given
moment.

When the student interacts with the objects from a workspace,
the diagram shows the state changes while the program executes.
This provides a live vision of what happens in the object environ-
ment after each message-send.

The visual representation of the objects and references in the
environment and the ability to follow their changes along with the
program execution improves the understanding of some important
concepts of the paradigm: like references and object identity.

3. Implementations
The first implementation of a tool based on the proposed style was
an add-on for the Dolphin Smalltalk1 environment which allowed
the creation of objects without using classes and had a workspace
to interact with them [7]. We used that first implementation to put in
practice the idea of delaying the introduction of the class concept,
and it was also useful as a model for the next implementations.

Nowadays, there is a new version of that tool built on top of
Pharo Smalltalk2 named LOOP (Learning Object Oriented Pro-

1 Object Arts Dolphin Smalltalk: http://www.object-arts.com/
2 Pharo Smalltalk: http://www.pharo-project.org/

gramming) implementing the first versions of the features de-
scribed above [7].

The main menu of LOOP is a Lesson Browser (fig. 1), where
lessons can be created, opened, deleted, exported to a file for shar-
ing and imported back in the Pharo image. Exporting and importing
a lesson is very useful for the teacher to evaluate exercises done by
the students and also give them prebuilt lessons.

Figure 1. Lesson Browser

To create objects and references inside a lesson, the user has
to use the object browser, which shows every reference and object
created in the lesson environment. Selecting a reference from the
menu brings up the object inspection window for the object that it
points to, where the user can browse and define its attributes and
methods (fig. 2).

Figure 2. Object Browser

A live object diagram shows the state of a lesson’s environment
and it is updated after every action that affects the environment
state, i.e. addition or deletion of attributes of an object, message
sends with side effects, creation of new objects, garbage collection,
etc. (fig. 3).

The user can define many workspaces with different scenarios
of interaction with the objects within the lesson (fig. 4).

An explicit garbage collection mechanism is illustrated with a
Garbage Bin metaphore. Candidates for collection can be easily
found in the object diagram because they would have no arrows
pointing at them, and the Garbage Bin lists those same unrefer-
enced objects (fig. 5). When the Garbage Bin is emptied, those un-
referenced objects are deleted from the environment and dissappear
from the object diagram (fig. 6, 7).

4. Experiences
LOOP was used in university courses and job trainings to put in
practice the concepts of polymorphism, object composition and

Figure 3. Interacting with objects from a workspace

Figure 4. Object Diagram

Figure 5. Deleting a reference

delegation from the start. Afterwards, the concepts tought in the
class was introduced as an alternative to build objects and share
and extend their behavior without difficulties.

In object oriented job trainings for technologies like Smalltalk
or Java, most of the trainees had few or no programming expe-
rience. Those courses demanded high quality training in a short
time. Using LOOP intensively in the first lessons to introduce the
paradigm, the transition to an specific programming language was
faster than in previous courses. Also, the aspirants who used LOOP,
showed a higher learning curve for other object-oriented technolo-
gies.

In UTN and UNQ object oriented courses where LOOP was
used the students were already experienced with structured pro-

Figure 6. Object environment before garbage collection

Figure 7. Object environment after garbage collection

gramming. The visual environment helped them to face the learn-
ing process without trying to just match their previous knowledge.

In Table 1 we present the last 5 years results of the OOP
exams from the Programming Paradigms course given by Fer-
nando Dodino at UTN. Fernando used the actual implementation
of LOOP in 2011 Q1, having the most successful pass rate in 5
years.

Quarter Pass Rate
2011 Q1 84,62%
2010 Q2 68.42%
2010 Q1 69.76%
2009 Q2 80.95%
2008 Q2 66.67%
2008 Q1 74.07%
2007 Q2 73.33%
2006 Q2 75.00%
Table 1. Pass Rates

5. Discussion and Related Work
LOOP is presented as a visual environment to teach OOP using
a reduced set of language constructions and a prototype approach
to create objects. It presents the main concepts of object, message
and reference in a specialized tool with a visual representation of
the object environment. Several visual tools to teach programming
already exists, like ObjectKarel[2], Scratch[14] and Etoys[4].

ObjectKarel presents a visual tool based on the abstraction of
robots to teach OOP, using a map where the robots-the objects-
move when messages are sent to them. LOOP does not center on a
specific abstraction like a robot: it allows the student to create any
other abstraction. Scratch and Etoys, are aimed to teach the basics
of programming to children, using visual objects and scripts to play

with them. These projects are mainly oriented to teach the basics
of programming to novices or children, while LOOP focuses on
teaching professional programming to people who wants to enter
in the software industry.

LOOP’s prototype approach is mainly based on the ideas of Self
[13] and Javascript [17], differing in some crucial points. LOOP’s
model is more restrictive than the existing in Self, allowing only
one parent for each object, focusing on the concepts the tools wants
to show -object, message, relations, polymorphism- instead of other
more complex ones -classes, inheritance, traits, mixins- existing
in a full featured language. The idea of parent slots/prototypes
in LOOP is completely handled by the tool, whithout letting the
student manage them.

6. Conclusions
Our experience using LOOP shows that students learn the object
oriented programming paradigm more easily when we incorporate
a programming environment offering visual tools for creating ob-
jects and interacting with them. Also, defining our own program-
ming environment, allows us to select the programming concepts
we want to introduce at each step of the learning process, provid-
ing an excellent ground for a gradual introduction of those con-
cepts. The programming environment proves to be very useful for
students, with or without previous programming knowledge, be-
cause it allows them to focus on the most important concepts of
the programming paradigm, avoiding technology-specific distract-
ing elements. A solid knowledge of those concepts facilitates a later
transition to any other object-oriented programming language.

7. Further work
The current implementation of LOOP is based on Smalltalk and the
syntax used when programming is the syntax of the Smalltalk lan-
guage. We think this syntax is the best choice for an introductory
course, because of its simplicity and is resemblance of the natural
language. Also it is meant for courses that, after an introduction
based on LOOP, can continue learning object-oriented program-
ming in a real Smalltalk environment. Nevertheless, we consider
that a future implementation of LOOP should include a config-
urable syntax, allowing the teacher to choose the most similar op-
tion to that of the language he is planing to use in the later stages
of the course. For example, if the course is going to continue using
the Java language, a C-like syntax could be considered for being
used on LOOP. This would allow us to take the most of LOOP also
in courses based on other languages different from Smalltalk. Be-
sides, the tool could allow the teacher to configure its own syntax.

We also want to include a configurable type system. We think
that explicit type definitions take the focus away from the most im-
portant concepts of the paradigm and should be preferably avoided
in introductory courses. Nevertheless, since many object-oriented
languages make heavy use of static type-systems with explicit type
definitions, a configurable type-system should also be considered.

The current implementation of LOOP offers a limited support
for developing unit tests. This part of the tool should be improved
in order to facilitate the use of test-driven development (TDD) from
the begining of the course. Since the nature of LOOP programming
environment imposes some specific difficulties to build tests with-
out side-effect, a concrete implementation of TDD inside of LOOP
is still to be analyzed in depth.

We also consider improving both appearance and functionality
of the graphical diagrams of LOOP. Object diagrams should be in-
teractive, allowing the creation of new objects or sending messages
from the diagram itself, as an alternative to the workspace and the
reference-panel. Also, sequence and collaboration diagrams would
be useful for the comprehension of the dynamic relationships be-

tween objects. This kind of diagrams could be inferred from the
evaluation of any piece of code, even the execution of tests.

Another subject of research is a “debugger” for the tool [1]. We
think that a live and powerful debugger à la Smalltalk is a rich tool
for the understanding of the whole environment behaviour. After a
message is sent, a debugger view can be used like a video player,
with play, forward and backward buttons to navigate the message
stack and see how the state changes after each message send in the
object diagram.

Finally, there are some improvements to be made to the user
interface, such as shortcuts, code completion, improved menus or
internationalization. Currently the tool is only available in spanish,
we want to make it configurable to add more languages as neces-
sary.

Acknowledgments
Carlos Lombardi and Leonardo Cesario collaborated in the first im-
plementation of the programming environment. Also, many of the
teachers and students of the subjects of Programming Paradigms at
UTN and Computers II at UNQ gave us great help by testing our
tools, reporting bugs and proposing new ideas. Gabriela Arévalo,
Victoria Griggio and Débora Fortini helped us in the writing of this
paper. Fernando Dodino provided us his course statistics.

References
[1] J. Bennedsen and C. Schulte. Bluej visual debugger for

learning the execution of object-oriented programs? Trans.
Comput. Educ., 10:8:1–8:22, June 2010. ISSN 1946-
6226. doi: http://doi.acm.org/10.1145/1789934.1789938. URL
http://doi.acm.org/10.1145/1789934.1789938.

[2] R. Findler, John. Clements, Cormac. Flanagan, Matthew. Flatt,
Shriram. Krishnamurthi, Paul. Steckler and Matthias. Felleisen
DrScheme: a programming environment for Scheme J.
Functional Programming 12: 159–182, March 2002. URL
www.cs.cmu.edu/ rwh/courses/refinements/papers/Findleretal02/jfp.pdf
- .

[3] M. Hertz and E. D. Berger. Quantifying the performance of
garbage collection vs. explicit memory management. In Proceedings
of the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, OOPSLA ’05,
pages 313–326, New York, NY, USA, 2005. ACM. ISBN 1-59593-
031-0. doi: http://doi.acm.org/10.1145/1094811.1094836. URL
http://doi.acm.org/10.1145/1094811.1094836.
http://www.squeakland.org/resources/articles/article.jsp?id=1008

[4] A. Kay Squeak Etoys authoring 2005-01-01. URL
http://www.vpri.org/pdf/rn2005001 learning.pdf.

[5] S. Kouznetsova. Using bluej and blackjack to teach
object-oriented design concepts in cs1. J. Comput. Small
Coll., 22:49–55, April 2007. ISSN 1937-4771. URL
http://portal.acm.org/citation.cfm?id=1229637.1229646.

[6] N. Liberman, C. Beeri, and Y. Ben-David Kolikant. Dif-
ficulties in learning inheritance and polymorphism. Trans.
Comput. Educ., 11:4:1–4:23, February 2011. ISSN 1946-
6226. doi: http://doi.acm.org/1921607.1921611. URL
http://doi.acm.org/1921607.1921611.

[7] C. Lombardi, N. Passerini, and L. Cesario. Instances and classes in the
introduction of object oriented programming. Smalltalks 2007 – Primera
Conferencia Argentina de Smalltalk, 2007.

[8] O. Madsen. Strategic research directions in object-oriented pro-
gramming. ACM Comput. Surv., 28, December 1996. ISSN
0360-0300. doi: http://doi.acm.org/10.1145/242224.242424. URL
http://doi.acm.org/10.1145/242224.242424.

[9] I. Michiels, A. Fernández, J. Börstler, and M. Prieto. Tools
and environments for understanding object-oriented concepts.
In Proceedings of the Workshops, Panels, and Posters on

Object-Oriented Technology, ECOOP ’00, pages 65–77, Lon-
don, UK, 2000. Springer-Verlag. ISBN 3-540-41513-0. URL
http://portal.acm.org/citation.cfm?id=646780.705783.

[10] M. Satratzemi, S. Xinogalos and V. Dagdilelis. An Environment
for Teaching Object-Oriented Programming: ObjectKarel In Pro-
ceedings of the The 3rd IEEE International Conference on Advanced
Learning Technologies , ICALT’03 ISBN 0-7695-1967-9 URL
http://portal.acm.org/citation.cfm?id=961590.

[11] V. Shanmugasundaram, P. Juell, and C. Hill. Knowledge building
using visualizations. In Proceedings of the 11th annual SIGCSE
conference on Innovation and technology in computer science education,
ITICSE ’06, pages 23–27, New York, NY, USA, 2006. ACM. ISBN 1-
59593-055-8. doi: http://doi.acm.org/10.1145/1140124.1140134. URL
http://doi.acm.org/10.1145/1140124.1140134.

[12] V. Shcherbina, P. Vortman, and G. Zodik. A visual object-
oriented development environment (voode). In Proceedings of the
1995 conference of the Centre for Advanced Studies on Collabo-
rative research, CASCON ’95, pages 57–. IBM Press, 1995. URL
http://portal.acm.org/citation.cfm?id=781915.781972.

[13] D. Ungar and R. B. Smith. Self. In Proceedings of the third ACM
SIGPLAN conference on History of programming languages, HOPL
III, pages 9–1–9–50, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-766-7. doi: http://doi.acm.org/10.1145/1238844.1238853. URL
http://doi.acm.org/10.1145/1238844.1238853.

[14] I. Utting, S. Cooper, M. Kölling, J. Maloney, and M. Resnick.
Alice, greenfoot, and scratch – a discussion. Trans. Com-
put. Educ., 10:17:1–17:11, November 2010. ISSN 1946-
6226. doi: http://doi.acm.org/10.1145/1868358.1868364. URL
http://doi.acm.org/10.1145/1868358.1868364.

[15] P. Ventura and B. Ramamurthy. Wanted: Cs1 students. no ex-
perience required. In Proceedings of the 35th SIGCSE tech-
nical symposium on Computer science education, SIGCSE ’04,
pages 240–244, New York, NY, USA, 2004. ACM. ISBN 1-
58113-798-2. doi: http://doi.acm.org/10.1145/971300.971387. URL
http://doi.acm.org/10.1145/971300.971387.

[16] G. R. S. Weir, T. Vilner, A. J. Mendes, and M. Nordström. Dif-
ficulties teaching java in cs1 and how we aim to solve them. In
Proceedings of the 10th annual SIGCSE conference on Innova-
tion and technology in computer science education, ITiCSE ’05,
pages 344–345, New York, NY, USA, 2005. ACM. ISBN 1-59593-
024-8. doi: http://doi.acm.org/10.1145/1067445.1067543. URL
http://doi.acm.org/10.1145/1067445.1067543.

[17] L. Wilkens. Objects with prototype-based mechanisms. J. Comput.
Small Coll., 17:131–140, February 2002. ISSN 1937-4771. URL
http://portal.acm.org/citation.cfm?id=772636.772659.

IWST 2011 Selected papers

50

Memoization Aspects: a Case Study

Santiago Vidal
ISISTAN Research Institute, Faculty

of Sciences, UNICEN University,
Campus Universitario, Tandil, Buenos

Aires, Argentina, Also CONICET
svidal@exa.unicen.edu.ar

Claudia Marcos
ISISTAN Research Institute, Faculty

of Sciences, UNICEN University,
Campus Universitario, Tandil, Buenos

Aires, Argentina, Also CIC
cmarcos@exa.unicen.edu.ar

Alexandre Bergel
PLEIAD Lab, Department of

Computer Science (DCC), University
of Chile, Santiago, Chile

http://bergel.eu

Gabriela Arévalo
Universidad Nacional de Quilmes, Bernal,
Buenos Aires, Argentina, Also CONICET

garevalo@unq.edu.ar

Abstract
Mondrian, an open-source visualization engine, uses caching
mechanism to store precalculated values avoiding calculat-
ing them when they are needed in the application. During
evolution phases of any software, unanticipated changes are
difficult to predict. Particularly in the case of Mondrian, in
the planned extensions of this tool, we have noticed that
the caches sometimes are not used. Using aspect-oriented
programming, we have refactored these caches into a well
defined aspect to solve the mentioned problem. We have
achieved it without paying the price of runtime problems.

1. Introduction
Dealing with emerging requirements in a target application
is probably one of the most difficult challenges in software
engineering [13].

This paper presents a solution to a maintenance problem
we recently faced with while developing the Mondrian ap-
plication. Mondrian is an agile visualization engine imple-
mented in Pharo, and is used in more than a dozen projects1.
As in many software developments, new requirements of sev-
eral increasing number of clients impact on design decisions
that were hold for years.

1 http://moosetechnology.org/tools

[Copyright notice will appear here once ’preprint’ option is removed.]

Mondrian uses simple two-dimensions rendering to graph-
ically visualize a target domain. Mondrian is almost exclu-
sively used to visualize software metrics and lets the user
produce a wide range of visual representations2. One of the
strong design decision that Mondrian holds is the structure of
its multiple cache mechanisms.

Mondrian has 9 caches spread over the graphical ele-
ment hierarchy. The caches aim to quickly render two di-
mensional widgets, graphically composed of rectangle and
line shapes. Mondrian caches are instances of the memo-
ization technique3. Sending twice the same message returns
the same value if there is no side effect that impacts on the
computation.

Unfortunately, the new requirements of Mondrian defeats
the purpose of some caches. One example is the bounds
computation to obtain the circumscribed rectangle of a two-
dimensional graphical element. This cache is senseless in
a 3D setting. Bypassing the cache results in a complex
extension of Mondrian.

We have first identified where the caches are implemented
and how they interact with the rest of the application. For each
cache, we marked methods that initialize and reset the cache.
We have subsequently undertaken a major refactoring of
Mondrian core: we have implemented a prototyping version
of Mondrian, in which caches are externalized from the
base code. We implement our refactoring with a customized
aspect-based mechanism. We were able to modularize the
cache while preserving the overall architecture and Mondrian
performances were not affected with the refactoring process.

The contributions of this paper are: (i) identification of
memoizing cross-cutting concern and (ii) refactorization of

2 http://www.moosetechnology.org/docs/visualhall
3 http://www.tfeb.org/lisp/hax.html#MEMOIZE

1 2011/6/25

these cross-cutting concerns into modular and pluggable
aspects.

The paper is structured as follows. Section 2 shows the
problem we faced with when trying to evolve Mondrian.
Section 3 describes the aspect-based solution we adopted.
Section 4 presents the impacts of our solution on Mondrian.
Section 5 briefly summarizes the related work. Section 6
presents some conclusions.

2. Making Mondrian Evolve
This section details a maintenance problem we have faced
with when developing Mondrian.

2.1 Turning Mondrian into a framework
Mondrian4 is an agile visualization library [12]. A domain
specific language is provided to easily define interactive visu-
alizations. Visualizations are structured along a graph struc-
ture, made of nested nodes and edges. Mondrian is a crucial
component, used in more than a dozen independent projects.
To meet clients performance requirements, Mondrian authors
are focused on providing a fast and scalable rendering. To
that purpose, Mondrian contains a number of caches to avoid
redundant code executions.

Mondrian is on the way to become a visualization engine
framework more than a library as it is currently. It is now used
in situations that were not originally planned. For example, it
has been used to visualize the real-time behavior of animated
robots5, 3D visualizations6, whereas it has been originally
designed to visualize software source code using plain 2D
drawing [9]. The caches that are intensively used when
visualizing software are not useful and may even be a source
of slowdown and complexity when visualizing animated
robots.

2.2 Memoization
Memoization is an optimization technique used to speed up
an application by making calls avoid repeating the similar pre-
vious computation. Consider the method absoluteBounds
that any Mondrian element can answer to. This method deter-
mines the circumscribed rectangle of the graphical element:

MOGraphElement>>absoluteBounds

^
self shape absoluteBoundsFor: self

The method absoluteBoundsFor: implements a heavy com-
putation to determine the smallest rectangle that contains all
the nested elements. Since this method does not perform any
global side effect, the class MOGraphElement defines an instance
variable called absoluteBoundsCache which is initialized at the

4 http://www.moosetechnology.org/tools/mondrian
5 http://www.squeaksource.com/Calder.html
6 http://www.squeaksource.com/Klotz.html

first invocation of absoluteBounds. Subsequent invocations
will therefore use the result previously computed.

Obviously, the variable absoluteBoundsCache needs to be
set to nil when the bounds of the element are modified (e.g.,
adding a new nested node, drag and dropping).

2.3 Problem
Mondrian intensively uses memoization for most of its com-
putation. A user-performed interaction that leads to an update
invalidates the visualization, since the cache need to be re-
computed. These memoizations were gradually introduced
over the development of Mondrian (which started in 2006).
Each unpredictable usage, such as for example visualization
of several inner nodes, leaded to a performance problem that
has been solved using a new memoization. There are about
32 memoizations in the current version of Mondrian.

These caches have been modified along the common
usage of Mondrian. Visualizations produced are all static
and employ colored geometrical objects.

Extending the range of applications for Mondrian turns
some of the caches senseless. For example absoluteBoundsCache

has no meaning in the three-dimensional version of Mondrian
since the circumscribed rectangle is meaningful only with
two dimensions.

Using delegation. We first tried to address this problem by
relying only on explicit objects, one for each cache. This
object would offer the needed operations for accessing and
resetting a cache.

As exemplified with the method absoluteBounds given
above, the caches are implemented by means of dedicated
instance variables defined in the Cache class. That is to say,
each cache is associated with an instance variable. In this
way, a variable of the Cache class, called generalCache, is
defined in the MOGraphElement class. Through this variable the
different caches can be accesed with the method cacheAt:(

key) where key is a string with the name of the cache.
Figure 1 illustrates this situation where a graph element

has one instance of the Cache class, itself referencing to many
instances of CacheableItem, one for each cache.

Below we show how the method absoluteBounds is written
following this approach:

MOGraphElement>>absoluteBounds

ifCacheNil: [

putElement: (self shape absoluteBoundsFor: self)].
^
getInternalCache.

As we observe, with this approach the different instance
variables related with the caches are replaced by a unique
variable called generalCache. On the other hand, the legibility
of the method is deteriorated as well as the performance.

Significant overhead. This modularization solely based on
delegating messages has a significant overhead at execution

2 2011/6/25

time due to the additional indirection. The separation of this
concern is not a trivial problem. Specifically, when we use
this solution, the caches mechanism was 3 to 10 times slower,
with the delay proportional to the number of elements.

2.4 Requirement for refactoring
Refactoring Mondrian is a task to be performed carefully. In
particular, the refactoring has the following constraints:

• All cache accesses have to be identified. This is essential
to have all the caches equally considered.

• No cost of performance must be paid, else it defeats the
whole purpose of the work.

• Readability must not be reduced.

3. Aspect-based Refactoring
The goal of the refactoring is the separation of the Cache
Concern from the four essential classes of Mondrian: MO-
GraphElement and its subclasses (MOEdge, MONode, and
MORoot). These classes have 235 methods and more than
1000 number of lines of codes in total.

3.1 Identifying caches
The first step of the refactoring is identifying the caches.
This initial identification of the caches is done with the in-
formation provided by the developers of Mondrian and is
based on knowing the variables related to the caches and the
places where they are used. The caches are mostly identified
by browsing the methods in which the caches variables are
referenced and accessed. Nine different caches are found in
Mondrian: cacheShapeBounds, cacheForm, boundsCache,
absoluteBoundsCache, elementsToDisplayCache, lookupN-
odeCache, cacheFromPoint, cacheToPoint, and cacheBounds.
Each of them has a different internal structure according to
what is stored: boundsCache will hold an instance of the class
Rectangle and cacheForm an instance of a bitmap Forms, for
example.

After this initial identification, the fragment of codes in
which the caches are used are grouped together based on the
purpose of its use (e.g., saving information, obtaining the data
stored). Each group is associated with different activities:

• Initialize and reset the cache: the fragments of code in this
group initialize or reset a cache variable putting them in
nil or creating an instance of an object.

• Retrieve the cache value: this group obtains the informa-
tion that is saved in a cache.

• Store data in the cache: the code fragments grouped here
store information into a cache variable.

These groups allow the identification of code patterns that
are repeated when using the caches. An aspect refactoring is
associated for each found pattern [8]. These code patterns are
described in the following subsections.

3.2 Pattern description
We identified 5 code patterns based on Mondrian source code
and are described below. Each pattern is described with a
relevant typical occurrence, the number of occurrences we
found in Mondrian and an illustration.

Reset Cache. A cache has to be invalidated when its con-
tent has to be updated. We refer to this action as reset. The
code to express a reset is cache:=resetValue where resetValue
and the initial value the cache should have. Typically, the
resetValue depends on the type of the stored value. It could be
nil, an empty dictionary, or a particular value (e.g., 0@0). Eigh-
teen occurrences of this pattern are found in Mondrian. We
found that in some occurrences the reset of the caches is per-
formed before the logic of the method, and other methods in
which the reset must be done after. For example, the method
MOGraphElement>>shapeBoundsAt:put: resets the caches abso-
luteBoundsCache and boundsCache before modifying the
cache cacheShapeBounds. In contrast, the method MONode

>>translateBy:bounded: resets the caches boundsCache and
absoluteBoundsCache after executing most of the statements
of the method.

Consider the method MOGraphElement>>resetCache. This
method is called whenever the user drags and drops a graph-
ical element. In this method, the Reset Cache pattern is re-
peated in four occasions to reset the caches boundsCache, ab-
soluteBoundsCache, cacheShapeBounds, and elementsToDis-
playCache. In this case, the reset of the caches can be
done before or after the execution of the methods resetEle-
mentsToLookup and resetMetricCaches.

MOGraphElement>>resetCache
self resetElementsToLookup.
boundsCache := nil.
absoluteBoundsCache := nil.
cacheShapeBounds :=SmallDictionary new.
elementsToDisplayCache := nil.
self resetMetricCaches

Lazy Initialization. In some situations it is not relevant to
initialize the cache before it is actually needed. This happens
when a graphical element is outside the scrollbar visual frame:
no cache initialization is required for a graphical element
if the element is not displayed. These caches are relevant
only when the user actually sees the element by scrolling
the visualization. Typically, the structure of this pattern
is: ˆ cache ifNil:[cache:=newValue]. Mondrian contains
five occurrences of a lazy cache initialization. Consider the
method bounds:

MOEdge>>bounds
^ boundsCache ifNil:[boundsCache:= self shape
computeBoundsFor: self].

The circumscribed rectangle is returned by computeBoundsFor:

and is performed only when an edge is actually visible
(bounds is used in drawOn:, the rendering method).

3 2011/6/25

Figure 1. Cache behavior delegation.

Cache Initialization. This pattern represents a situation in
which a value is assigned to a cache. The structure of the
pattern is only an assignment: cache := aValue. This pattern
is found in three occasions. Consider the method cacheCanvas:

MOGraphElement>>cacheCanvas: aCanvas
cacheForm:= aCanvas form

copy: ((self bounds origin + aCanvas origin-(1@1))
extent: (self bounds extent + (2@2))).

The method cacheCanvas: is invoked only during testing
in order to verify some characteristics of the caches such as
their effectiveness.

Return Cache. This pattern shows the situation in which a
cache is accessed. The structure of the pattern is the return
of the cache: return cache. This pattern is found in four
occasions. Next, the method shapeBounds is presented as an
example in which cacheShapeBounds is accessed.

MOGraphElement>>shapeBounds
^ cacheShapeBounds

Cache Loaded. This pattern checks whether one cache or
more are initialized or conversely, if they are not nil. So,
the structure of the pattern for a single cache is cache !=
nil. This pattern is found in two occasions. Next the method
isCacheLoaded is presented as an example of this pattern.

MOGraphElement>>isCacheLoaded
^cacheForm notNil.

Additionally, Table 1 gives the occurrences of each pattern
in the MOGraphElement hierarchy, the methods involved in each
pattern, and the caches related with a pattern.

Figure 2 shows the distribution of the caches over the main
Mondrian classes, methods in which the caches are used, and
the classes where each cache is defined. As we observe, the
caches are used and defined across the whole class hierarchy.

3.3 Cache concerns as aspects
Once the code patterns are identified, we set up strategies to
refactor them. The goal of the refactorization is the separation

of these patterns from the main code without changing the
overall behavior, enforced by an extended set of unit tests.

The refactoring is performed by encapsulating each of
the nine caches into an aspect. Aspect definition weaving is
achieved via a customized AOP mechanism based on code
annotation and source code manipulation.

The refactoring strategy used is: for each method that in-
volves a cache, the part of the method that directly deals
with the cache is removed and the method is annotated. The
annotation is defined along the cache pattern associated to
the cache access removed from the method. The annota-
tion structure is <patternCodeName: cacheName> where
cacheName indicates the name of the cache to be considered
and patternCodeName indicates the pattern code to be gener-
ated. For example, the annotation <LazyInitializationPattern:
#absoluteBoundsCache> indicates that the Lazy Initializa-
tion pattern will be “weaved” for the cache absoluteBound-
sCache in the method in which the annotation is defined.

The weaving is done via a customized code injection
mechanism. For each annotation a method may have, the code
injector performs the needed source code transformation to
use the cache. Specifically, the weaving is achieved through
the following steps:

1. A new method is created with the same name that the
method that contains the annotation but with the prefix
“compute” plus the name of the class in which is defined.
For example, given the following method:

MOGraphElement>>absoluteBounds
<LazyInitializationPattern: #absoluteBoundsCache>
^ self shape absoluteBoundsFor: self

a new method called computeMOGraphElementAbsoluteBounds

is created.

2. The code of the original method is copied into the new
one.

MOGraphElement>>computeMOGraphElementAbsoluteBounds
^ self shape absoluteBoundsFor: self

4 2011/6/25

Cache Occurrences Methods involved Caches involved
Reset Cache 18 10 boundsCache, abso-

luteBoundsCache,
cacheShapeBounds, ele-
mentsToDisplayCache,
cacheForm, cacheFrom-
Point, cacheToPoint

Lazy Initialization 5 5 elementsToDisplayCache,
absoluteBound-
sCache, boundsCache,
cacheBounds

Cache Initializa-
tion

3 3 cacheForm, cacheFrom-
Point, cacheToPoint

Return Cache 4 4 cacheShapeBounds,
cacheForm, cacheFrom-
Point, cacheToPoint

Cache Loaded 2 2 cacheForm, cacheFrom-
Point, cacheToPoint

Total 32 24

Table 1. Cache Concern scattering summary.

absoluteBounds
bounds
elementsToDisplay
cacheCanvas
isCacheLoaded
resetAbsoluteBoundsCacheRecursively
resetCache
resetElementsToDisplayCache
resetFormCache
resetFormCacheRecursively
resetFormCacheToTheRoot
shapeBoundsAt:put:
shapeBounds

-cacheShapeBounds
-cacheForm
-boundsCache
-absoluteBoundsCache
-elementsToDisplayCache
-lookupNodeCache

MOGraphElement

bounds
isCacheLoaded
resetCache
cacheFromPoint:
cacheToPoint:
cacheFromPoint
cacheToPoint

-cacheFromPoint
-cacheToPoint

MOEdge

cacheForm
scaleBy:
translateBy:bounded:

MONode

bounds
-cacheBounds

MORoot

LI

CI

ResC

RetC

LI
CL

ResC
CI

RetC

RetC
ResC

LI

LI: lazy initialization
CI: cache initialization
ResC: reset cache
RetC: return cache
CL: cache loaded

Figure 2. Pattern locations in the MOGraphElement hierarchy

5 2011/6/25

3. The code inside the original method is replaced by the
code automatically generated according to the pattern
defined in the annotation. This generated method contains
a call to the new one of the Step 1.

MOGraphElement>>absoluteBounds
absoluteBoundsCache

ifNotNil: [^ absoluteBoundsCache].
^ absoluteBoundsCache:=

(self computeMOGraphElementAbsoluteBounds)

In order to automatically generate the code to be injected,
the code weaver uses a class hierarchy (Figure 3), rooted in
the abstract CachePattern class. CachePattern class contains
the methods needed to process annotations (called pragmas in
the Pharo terminology). Each subclass overrides the method
generateMethodWith: to perform the source code manipula-
tion.

Next, we present the refactorings applied to each code
pattern.

Reset Cache. In order to refactor this pattern each state-
ment that resets a cache was extracted using an annotation.
The annotation contains the cache to be resetted. Since in
some cases the resets are done at the beginning of a method
and others at the end, a hierarchy of Reset Cache pattern
is created. Figure 3 shows this hierarchy, which is com-
posed of the classes AbstractResetCachePattern, BeforeRe-
setCachePattern, and AfterResetCachePattern. The anno-
tations are defined in the classes at the bottom of the hi-
erarchy as <BeforeResetCachePattern: cacheName> and
<AfterResetCachePattern: cacheName> respectively. For
example, in the case presented in Section 3.2 of the method
resetCache, an annotation is defined for each reset of a cache
leaving a cleaner code in the method. In this case, all the
resets are done before the method call, so the used annota-
tions are the ones defined by BeforeResetCachePattern. Even
though the order of calls is changed (in comparison with
the original method), the method behavior is not modified.
The code to be generated will reset the cache defined in the
annotation. Following, the refactored code is presented:

MOGraphElement>>resetCache
<BeforeResetCachePattern: #absoluteBoundsCache>
<BeforeResetCachePattern: #elementsToDisplayCache>
<BeforeResetCachePattern: #boundsCache>
<BeforeResetCachePattern: #cacheShapeBounds>
self resetElementsToLookup.
self resetMetricCaches

The methods resetElementsToLookup and resetMetric-
Caches perform additional actions that do not involve the
cache variables. For this reason they remain in the method
resetCache.

After the code injection, the method resetCache is trans-
formed into:

MOGraphElement>>resetCache
absoluteBoundsCache:=nil.
elementsToDisplayCache:=nil.

boundsCache:=nil.
cacheShapeBounds:=SmallDictionary new.
self computeMOGraphElementresetCache

where the method computeMOGraphElementresetCache is:
MOGraphElement>>computeMOGraphElementresetCache

self resetElementsToLookup.
self resetMetricCaches

This mechanism of injection of the generated code is the
same for the rest of the patterns.

Lazy Initialization. To refactor this pattern the precondi-
tion checking is contained into an annotation defined as
<LazyInitializationPattern: cacheName>. Given that the
cache is initialized with a value when the precondition fails,
the original method is modified to return this value. For ex-
ample, in the case of the method bounds introduced in the
previous section, the code related to the cache is extracted
using the annotation and only the value to initialize the cache
remains in the method as shown the code below:
MOEdge>>bounds

<LazyInitializationPattern: #boundsCache>
self shape computeBoundsFor: self.

Thus, the code to be generated in this example will be
boundsCache ifNotNil: [ˆ boundsCache]. ˆ boundsCache:=
computeMOEdgeBounds.

Cache Initialization. The refactorization of this cache
is similar to the last one. Given that the structure of the
pattern is an assignment, the first section of the assign-
ment (cacheName:=) will be generated automatically by
the weaver using an annotation <CacheInitializationPattern:
cacheName>. The value at which the cache is initialized con-
stitutes the method body. In the case of the example presented
in Section 3.2, the refactored code is shown below:
MOGraphElement>>cacheCanvas: aCanvas

<CacheInitializationPattern: #cacheForm>
(aCanvas form copy: ((self bounds origin + aCanvas
origin

- (1@1)) extent: (self bounds extent + (2@2)))).

Return Cache. In this refactorization the entire return
clause is encapsulated by the annotation. The annotation
is defined as <ReturnCachePattern: cacheName>. Follow-
ing, the refactored code of the example shown in the last
section is presented:
MOGraphElement>>shapeBounds

<ReturnCachePattern: #cacheShapeBounds>

Cache Loaded. In order to refactor this pattern the cache
checking is encapsulated by an annotation defined as <Cache-
LoadedPattern: cacheName>. The code generated contains a
sentence in which the checking is done for all the caches
defined in the annotations of this pattern contained in a
method. In the case of the example presented in Section 3.2,
the refactored code is shown below:

6 2011/6/25

Figure 3. Pattern hierarchy.

MOGraphElement>>isCacheLoaded
<CacheLoadedPattern: #cacheForm>

Using restructurings based on the patterns, the Cache
Concern is refactorized properly in more than 85% of the
methods of the MOGraphElement hierarchy that uses one or
more caches. Some uses of the caches are not encapsulated
by means of cache patterns due to that (1) the code belongs to
a cache pattern but the code related with the cache is tangled
with the main concern, or (2) the code does not match with
any of the described patterns. For example, the following
method
MOGraphElement>>nodeWith: anObject ifAbsent: aBlock

| nodeLookedUp |
lookupNodeCache ifNil: [lookupNodeCache :=
IdentityDictionary new].

lookupNodeCache at: anObject ifPresent: [:v | ^ v].
nodeLookedUp := self nodes detect: [:each | each
model = anObject] ifNone: aBlock.

lookupNodeCache at: anObject put: nodeLookedUp.
^ nodeLookedUp

could not be refactored because the cache lookupNodeCache
is used to make different computations across the whole
method by which is closely tied to the main concern. These
uses of the caches that are not encapsulated by using the de-
scribed patterns are also refactored by means of annotations.
For these cases a Generic AOP pattern is used. The used
annotations have the structure <cache: cacheName before:
beforeCode after: afterCode > where cache indicates the
name of the cache to be injected. The before and after clauses
indicate the source code that will be injected and when it will
be injected in regard to the execution of the method. That is
to say, the code inside the original method will be replaced
by the code pointed out in the before clause of the annota-
tion, a call to the new method will be added, and the code
contained in the after clause of the annotation will be added
at the end. For example, the refactorization of the method
presented previously is

MOGraphElement>>nodeWith: anObject ifAbsent: aBlock
<cache: #lookupNodeCache before: lookupNodeCache
ifNil: [lookupNodeCache := IdentityDictionary new].

lookupNodeCache at: anObject ifPresent: [:v | ^ v].
^lookupNodeCache at: anObject put: (after:) >
| nodeLookedUp |
nodeLookedUp := self nodes detect: [:each | each
model = anObject] ifNone: aBlock.

^ nodeLookedUp

As we see, all the code with references to the cache lookupN-
odeCache are encapsulated into the before clause of the an-
notation.

4. Results
The use of the presented patterns is used to compose the
caches behavior improving the maintenance of the system. In
this line, the contribution of the approach is twofold. First,
the mechanism of encapsulation and injection could be used
to refactor the current Mondrian caches (and also those ones
that may be introduced in the future) improving the code
reuse. Second, the code legibility is increased because the
Cache Concern is extracted from the main concern leaving a
cleaner code.

The cache composition is achieved during the injection
phase. As the different pieces of code that are related to the
cache are encapsulated by means of the patterns restructur-
ings, an implicit process of division of the complexity of
the caches behavior is achieved. That is to say, this kind of
approach helps the developer by splitting the caches behav-
ior in small fragments of code. These fragments of code are
encapsulated by the patterns restructurings and they are fi-
nally composed during the injection phase. For example, the
functionality related to the cache absoluteBoundsCache is
refactored by the patterns Reset Cache, Lazy Initialization,
and Cache Initialization.

7 2011/6/25

One of the main priorities of the refactoring is to not affect
the performance of the system. For this reason a group of
benchmarks were measured in order to evaluate the cache
performance when a set of nodes and edges are displayed.
The variations of performance between the system before and
after applying refactorings that we observe are not significant.
That is because, in general, the code after the injection of the
caches is the same that the original code before the Mondrian
refactoring. There were only minor changes such as the
reorder of statements in some methods (without changes in
the behavior) and the deletion of methods with repeated code.
Figure 4 shows the details of the benchmarks results, in which
the time execution to the nodes and edges visualization were
calculated. The results of both benchmarks were average over
a total of 10 samples. As we see, as was expected, there are
not remarkable variations during these displaying.

Using cache in the main logic. This experience has been
the opportunity to think again on the implementation of
Mondrian. We found one occurrence where a cache variable
is not solely used as a cache, but as part of main logic
of Mondrian. The method bounds contains an access to
boundsCache:

MOGraphElement >>bounds
...
self shapeBoundsAt: self shape ifPresent: [:b | ^
boundsCache := b].

...

MOGraphElement >>translateAbsoluteCacheBy: aPoint
absoluteBoundsCache ifNil: [^ self].
absoluteBoundsCache := absoluteBoundsCache
translateBy: aPoint

The core of Mondrian is not independent of the cache
implementation. The logic of Mondrian relies on the cache
to implement its semantics. This is obviously wrong and this
is situation is marked as a defect7.

Singularity of #displayOn: Displaying a node uses all the
defined caches to have a fast rendering. We were not able to
define displayOn: as the result of an automatic composition.
The main problem is that this method uses intensively the
cache to load and save data during its execution. For this
reason, the code related to the cache is very scattered across
the method making the restructuration by mean of cache
patterns almost unviable. So, this method was restructured
using the Generic AOP pattern.

Reordering. The injection mechanism may reorder state-
ments in the instrumented method. This is the case of the
reset method (which was presented in the previous section).
As shown, in this case the caches are resetted at the be-
ginning of the method and after that the methods resetEle-
mentsToLookup and resetMetricCaches are invoked in con-

7 http://code.google.com/p/moose-technology/issues/
detail?id=501

trast with the original method in which the former was in-
voked at the beginning and the former at the end. Even though
the order of calls is changed, the behavior of the method is
not modified. The consistent behavior was manually and au-
tomatically checked.

5. Related Work
Our approach is not particularly tied to our code weaver.
An approach called AspectS has been proposed for Squeak
Smalltalk [7]. AspectS is a general purpose AOP language
with dynamic weaving. Unfortunately, it does not work on
Pharo, the language in which Mondrian is written. A new
aspect language for Pharo is emerging8, we plan to use it in
the future.

Several approaches have been presented in order to refac-
tor and migrate object-oriented systems to aspect-oriented
ones. Some of these approaches use a low level of granularity
focusing on the refactorization of simple languages elements
such as methods or fields [1, 3, 5, 14, 16]. On the other hand,
other approaches are focused on a high level of granularity.
This kind of approaches tries to encapsulate into an aspect an
architectural pattern that represents a cross-cutting concern.
That is, these approaches are focused on the refactorization
of a specific type of concern. Our work is under this category.

Others works that deal with the refactorization in a high
level of granularity are discussed next. Da Silva et al. [4]
present an approach of metaphor-driven heuristics and associ-
ated refactorings. The refactorization of the code proposed is
applicable on two concerns metaphors. A heuristic represents
a pattern of code that is repeated for a specific concern and
it is encapsulated into an aspect by means of a set of fixed
refactorings.

Van der Rijst et al. [11, 15] propose a migration strategy
based on crosscutting concern sorts. With this approach the
cross-cutting concerns are described by means of concern
sorts. In order to refactor the code, each specific CCC sort
indicates what refactorings should be applied to encapsulate
it into an aspect.

Hannemman et al. [6] present a role-based refactoring
approach. Toward this goal the cross-cutting concerns are
described using abstract roles. In this case the refactorings
that are going to be used to encapsulate a role are chosen by
the developer in each case. Finally, AOP has been used for
some mechanisms of cache in the past. Bouchenak et al. [2]
present a dynamic web caching content approach based on
AOP. In order to achieve this goal, a set of weaving rules
are specified using AspectJ as aspect-oriented language. In
this same line, Loughran and Rashid [10] propose a web
cache to evaluate an aspect-oriented approach based on XML
annotations.

8 http://pleiad.cl/phantom

8 2011/6/25

Figure 4. Benchmark of performance.

6. Conclusion
This paper presents a software evolution problem in which
early made decisions become less relevant. We have solved
this problem by using aspects to encapsulate and separate
problematic code from the base business code. The refactor-
ing has been realized without a performance cost. All Mon-
drian memoization implementations have been refactored
into a dedicated aspect.

References
[1] D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella.

Automated refactoring of object oriented code into aspects. In
ICSM ’05: Proceedings of the 21st IEEE International Confer-
ence on Software Maintenance, pages 27–36, Washington, DC,
USA, 2005. IEEE Computer Society. ISBN 0-7695-2368-4.
doi: http://dx.doi.org/10.1109/ICSM.2005.27.

[2] S. Bouchenak, A. L. Cox, S. G. Dropsho, S. Mit-
tal, and W. Zwaenepoel. Caching dynamic web con-
tent: Designing and analysing an aspect-oriented solu-
tion. In M. van Steen and M. Henning, editors, Mid-
dleware, volume 4290 of Lecture Notes in Computer
Science, pages 1–21. Springer, 2006. ISBN 3-540-
49023-X. URL http://dblp.uni-trier.de/db/conf/
middleware/middleware2006.html#BouchenakCDMZ06.

[3] M. Ceccato. Automatic support for the migration towards
aspects. In CSMR ’08: Proceedings of the 2008 12th European
Conference on Software Maintenance and Reengineering,
pages 298–301, Washington, DC, USA, 2008. IEEE Computer
Society. ISBN 978-1-4244-2157-2. doi: http://dx.doi.org/10.
1109/CSMR.2008.4493331.

[4] B. C. da Silva, E. Figueiredo, A. Garcia, and D. Nunes.
Refactoring of crosscutting concerns with metaphor-based
heuristics. Electron. Notes Theor. Comput. Sci., 233:105–125,
2009. ISSN 1571-0661. doi: http://dx.doi.org/10.1016/j.entcs.
2009.02.064.

[5] J. Hannemann, T. Fritz, and G. C. Murphy. Refactoring to
aspects: an interactive approach. In eclipse ’03: Proceedings of

the 2003 OOPSLA workshop on eclipse technology eXchange,
pages 74–78, New York, NY, USA, 2003. ACM. doi: http:
//doi.acm.org/10.1145/965660.965676.

[6] J. Hannemann, G. C. Murphy, and G. Kiczales. Role-based
refactoring of crosscutting concerns. In AOSD ’05: Proceed-
ings of the 4th international conference on Aspect-oriented
software development, pages 135–146, New York, NY, USA,
2005. ACM. ISBN 1-59593-042-6. doi: http://doi.acm.org/10.
1145/1052898.1052910.

[7] R. Hirschfeld. Aspects - aspect-oriented programming with
squeak. In M. Aksit, M. Mezini, and R. Unland, edi-
tors, NetObjectDays, volume 2591 of Lecture Notes in Com-
puter Science, pages 216–232. Springer, 2002. ISBN 3-540-
00737-7. URL http://dblp.uni-trier.de/db/conf/
jit/netobject2002.html#Hirschfeld02.

[8] A. Kellens, K. Mens, and P. Tonella. A survey of automated
code-level aspect mining techniques. Transactions on Aspect-
Oriented Software Development (TAOSD), IV (Special Issue
on Software Evolution):Springer-Verlag, 2007.

[9] M. Lanza and S. Ducasse. Polymetric views—a lightweight
visual approach to reverse engineering. Transactions on
Software Engineering (TSE), 29(9):782–795, Sept. 2003. doi:
10.1109/TSE.2003.1232284. URL http://scg.unibe.ch/
archive/papers/Lanz03dTSEPolymetric.pdf.

[10] N. Loughran and A. Rashid. Framed aspects: Supporting
variability and configurability for aop. In ICSR, volume 3107 of
Lecture Notes in Computer Science, pages 127–140. Springer,
2004. ISBN 3-540-22335-5. URL http://dblp.uni-trier.
de/db/conf/icsr/icsr2004.html#LoughranR04.

[11] M. Marin, A. Deursen, L. Moonen, and R. Rijst. An integrated
crosscutting concern migration strategy and its semi-automated
application to jhotdraw. Automated Software Engg., 16(2):323–
356, 2009. ISSN 0928-8910. doi: http://dx.doi.org/10.1007/
s10515-009-0051-2.

[12] M. Meyer, T. Gı̂rba, and M. Lungu. Mondrian: An ag-
ile visualization framework. In ACM Symposium on Soft-
ware Visualization (SoftVis’06), pages 135–144, New York,
NY, USA, 2006. ACM Press. doi: 10.1145/1148493.

9 2011/6/25

1148513. URL http://scg.unibe.ch/archive/papers/
Meye06aMondrian.pdf.

[13] I. Sommerville. Software Engineering. Addison Wesley, sixth
edition, 2000.

[14] P. Tonella and M. Ceccato. Refactoring the aspec-
tizable interfaces: An empirical assessment. IEEE
Transactions on Software Engineering, 31(10):819–832,
2005. doi: http://doi.ieeecomputersociety.org/10.1109/
TSE.2005.115. URL http://dx.doi.org/http://doi.
ieeecomputersociety.org/10.1109/TSE.2005.115.

[15] R. van der Rijst, M. Marin, and A. van Deursen. Sort-based
refactoring of crosscutting concerns to aspects. In LATE

’08: Proceedings of the 2008 AOSD workshop on Linking
aspect technology and evolution, pages 1–5, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-147-7. doi: http:
//doi.acm.org/10.1145/1404953.1404957.

[16] A. van Deursen, M. Marin, and L. Moonen. A systematic
aspect-oriented refactoring and testing strategy, and its applica-
tion to jhotdraw. CoRR, abs/cs/0503015, 2005.

10 2011/6/25

MDE-based FPGA Physical Design
Fast Model-Driven Prototyping with Smalltalk

Ciprian Teodorov
Lab-STICC MOCS, CNRS UMR 3192

ciprian.teodorov@univ-brest.fr

Loı̈c Lagadec
Lab-STICC MOCS, CNRS UMR 3192

loic.lagadec@univ-brest.fr

Abstract
The integrated circuit industry continues to progress rapidly
deepening the gap in between the technological break-
throughs and the electronic design automation industry. This
gap is even more problematic in the context of physical de-
sign, the last automation level between applications and the
technology. The challenges of meeting the physical and per-
formance constraints needs innovation at the algorithmic
level, and at the methodological level.

This study presents a methodological approach to physi-
cal design automation relying on model-driven engineering.
Relying on the flexibility, and adaptability of the Smalltalk
environment we propose an agile framework enabling fast
physical design tool-flow prototyping. We illustrate our ap-
proach by using the Madeo FPGA toolkit as a legacy code-
base that is incrementally changed to adopt this model-
driven development strategy.

Some pragmatic achievements are presented to illustrate
the principal axes of this approach: algorithmic improve-
ments through plug-and-play routines, domain-model exten-
sion for emerging technologies, as well as model evolution
towards a meta-described environment.

Categories and Subject Descriptors D.2.11 [Software Ar-
chitectures]

General Terms Design, Management

Keywords Model-Driven Engineering, Smalltalk, Physical
Design,

1. Introduction
Object-oriented design enabled, for years, the develop-
ment of feature-reach software environments, which pro-
pose flexible and extensible solutions for complex problem

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
IWST’11 23rd August 2011, Edinburgh.
Copyright c� 2011 ACM [to be supplied]. . . $10.00

spaces, such as electronic design automation (EDA). Madeo
framework[21, 24] is such an environment, automating the
complete design flow of FPGA-based1 application develop-
ment, from high-level application synthesis to the physical
design of the circuit layout. Result of 15 years of proactive
research focusing on different aspects of the FPGA CAD2

flow, the Madeo infrastructure cannot be described as a sin-
gle software solution. Instead, it is a compilation of a number
of different projects, which correspond to the research topics
under investigation at different times during its existence.

The high-complexity of today’s reconfigurable architec-
tures poses huge constraints in terms of automation. To tame
this complexity, the FPGA application synthesis is decom-
posed in a number of relatively independent problems, that
are to be solved and the results integrated into the final so-
lution. Most of these problems are NP-complete and typi-
cally solved heuristically. Moreover the optimization objec-
tives vary and the literature is very rich in solutions highly
optimized for specific configurations.

To survive in such a demanding context, a software so-
lution has to be very adaptable, flexible and it must evolve
over time. Exploiting the advantages of Smalltalk language
and environment, the Madeo infrastructure provides an one
stop shopping-point for FPGA application synthesis and re-
lated problems[10, 27]. From an evolution perspective, three
principal evolution axes were identified:
• Extending the domain model to integrate new domain-

specific concepts;
• Adding missing functionality to improve the domain cov-

erage and the automation level;
• Adding new functions, similar to the ones already present,

to give the user a choice, especially when we speak about
heuristic solutions.

The OO design methodology[47] provide a largely ac-
cepted mechanism for extending the domain model, the
inheritance. The design of the Madeo infrastructure, as a
framework, exploits inheritance for easily adding new do-
main concepts while maintaining a high-degree of cohesion

1 Field Programmable Gate Array
2 Computer Aided Design

and code sharing. However in terms of adding new behavior,
the OO design methodology is not clear on the preferred way
of functionally extending a system. Moreover into a research
context, the underlining idea is to rapidly produce prototypes
focused on specific research needs. In consequence, after
years of evolution and improvement, our software environ-
ment got bloated with many different projects (at different
maturity levels). And even more, some parts of the system
that got completely lost during the numerous integration
steps.

From a software engineering perspective, our principal
goal is to preserve our code-base, which gives us a strategic
advantage over other research groups. This legacy code-base
drives the innovation in our group, by providing high-end
solutions for many practical EDA problems. This enables us
to focus on novel and challenging aspects of the integrated
circuit design and automation. But at the same time we need
a methodological solution to solve the functional evolution
aspects by isolating the core functionality and exposing clear
interfaces. Moreover, we believe that such a methodological
solution will open the toolbox making it accessible to a
larger user base.

During the last years, model-driven engineering (MDE)
and component-based development have become some of
the most promising methodological approaches for tackling
the software complexity and evolution problems. Based on
the success stories of the MDE community, we focused our
attention on finding an evolution methodology fitting our
constraints, especially in terms of legacy-code reuse. Even
though UML3 became the de-facto standard for model-based
methodologies, in the case of our software projects, largely
based on Smalltalk philosophy and tools, we believe that
the Smalltalk community is still providing the right answers.
The success of the Moose platform[36] for software and data
analysis provided us with inspiration and insight for creating
the software development and evolution infrastructure pre-
sented in this work.

In this study, we present some conceptual, as well as prac-
tical, results in terms of software development methodology
for tackling the embarrassingly complex problems of inte-
grated circuit (IC) physical design automation. To the best
of our knowledge, except our preliminary study in[50], this
proposition is the first MDE-based approach addressing the
physical design automation problem. The principal contribu-
tions of this study are:

• A novel conceptual framework, based on the MDE method-
ology, for the physical design aspects of the EDA flow.
This framework stresses on the need of decoupled soft-
ware artifacts, and isolated concern-oriented software
modules. Moreover, from the practical point of view, this
methodology doesn’t impose any constraint on the imple-
mentation language or formalism of the core algorithms

3 Unified Modeling Language

and heuristics needed, which is very important given the
computational- and memory-intensive solutions needed
in our context.

• An abstract vocabulary for structurally describing the
applicative and architectural artifacts involved in the flow.
The use of this abstraction level enables the creation of a
common API that can be used for transversal features,
such as domain agnostic manipulations, querying, model
serialization, etc.

• A novel way for conceptually describing, characteriz-
ing and implementing physical design algorithms (e.g.
placement, routing) using the transformation metaphor.
These algorithms are viewed as model-to-model com-
posite transformations organized as hierarchical directed-
acyclic graphs. This view helps the algorithm designer to
focus on the specific problem to be solved while enabling
fine-grained reuse of software.

The remaining of this study dives into the details of this
work as follows. Section 2 presents the state of the art in
terms of MDE and circuit design automation. Section 3 starts
by presenting the enabling technologies and experiences be-
fore showing the principal characteristics of our methodol-
ogy. Section 4 further describe our approach focusing on the
domain-specific aspects of FPGA physical synthesis. Sec-
tion 5 shows practical experiences of our agile approach to
legacy refactoring. This process was used to progressively
adopt the presented MDE methodology in our framework,
without losing functionality at any step during the evolution
process. Section 6 reviews the principal ideas presented in
this study, before concluding with some future directions.

2. Related Works
This section has the dual role of introducing model-driven
engineering and circuit design automation to the readers as
well as briefly presenting the state of the art in both fields.

2.1 Model-driven development
Model-driven approach provides a methodology to tackle
the complexity of software development using abstraction,
problem decomposition, and separation of concerns. This
methodology places models and transformations at the cen-
ter of the software system development. A model can be seen
as an abstract and simplified way to describe and understand
complex systems. According to [33] a transformation is
”the automatic generation of one(or more) target model(s)
from one(or more) source model(s), according to a trans-
formation definition. A transformation definition is a set
of rules that together describe how a model in the source
language can be transformed into a model in the target lan-
guage.”

The massive adoption of the model-driven methodology
was favored principally by the standardization of Unified
Modeling Language (UML) and Model-Driven Architec-

ture(MDA) by the Object Management Group (OMG)[8].
Modeling languages such MOF, EMOF[38] or Ecore[46]
as well as the development of environments like Eclipse
Metamodeling Framework[46] have been largely adopted as
the de-facto standard for model-driven software engineer-
ing. Efforts, like Kermeta[35], proposed ways to ”breathe
life into (your) metamodels”, by adding an executable meta-
language, for operational semantics specification, to the con-
templative (structural) side of model-driven development.

But the OMG is not the only actor improving on the state
of the art of this field. The orthogonal classification architec-
ture, proposed by Atkinson et al. [1, 2], provides a new in-
sight into some possible future metamodeling environments,
able to solve some of the current limitations.

The works from the Software Composition Group, propos-
ing the use of Smalltalk as a ”reflexive executable meta-
language”[11] for ”meta-modeling at runtime”[19], address
some more pragmatic issues around model-driven engineer-
ing, e.g. the use of a single language – Smalltalk in this case
– for all the modeling aspects; the possibility to dynamically
change the meta-model at runtime; the need to have exe-
cutable meta-descriptions that alleviates the need for code
generation.

In the context of this study, we have adopted a hybrid ap-
proach based on the FAME meta-model for domain mod-
eling, and an ad-hoc Smalltalk-based behavior and algo-
rithm specification approach, relying on the ”transforma-
tion” metaphor, implemented using the visitor design pattern
and isolated software components.

2.2 Electronic Design Automation
One of the principal problems addressed by electronic de-
sign automation (EDA) tools is the compilation of behav-
ioral system specifications, in languages like C, Matlab to
hardware systems[28]. From this perspective the EDA flow
is typically decomposed in two compilation steps: high-level
synthesis, and physical synthesis. The high-level synthesis
(HLS) tools automatically convert behavioral descriptions of
the system into optimized hardware designs, described using
languages like VHDL or Verilog, which are then compiled to
technology-specific logic netlists. The physical-design tools
are used to map the technology-mapped netlists to electri-
cally correct physical circuits. In the context of this work we
are looking at FPGA physical synthesis flow, which is com-
posed of the following principal steps: partitioning, floor-
planning, placement, and routing.

2.2.1 HLS
UML extensions (profiles) such as SysML[51], Embedded
UML[31], and MARTE[52] have been proposed for the em-
bedded system design. These profiles allow the specification
of systems using high-level models. Mapping UML concepts
to the target language syntax low-level (i.e. VHDL) code is
generated. In [14, 43], for example, the authors propose a
HLS and design space exploration flow based on the MDE

methodology, which based on successive refinements of a
high-level model generates VHDL hardware accelerators.

Moreover, concerns such as interchange or debug are,
mainly, considered during HLS. As an example, RedPill[23]
supports probe-based validation of running applications.
Probes are inserted in the high-level code, but also appear
in the generated code, and bring controllability to the hard-
ware under execution. RedPill makes use of domain mod-
eling (in that case, the application) through Platypus[41],
a STEP/EXPRESS framework that offers both a standard
way of modeling the domain, and interchange facilities. In
particular, Platypus has been used in the scope of the Mor-
pheus FP6 Project[26] to support multi-target and cross-
environment synthesis/compilation. The output was a netlist
to be further processed by low-level tools (physical design).

2.2.2 FPGA Physical Design
The Field Programmable Gate Array (FPGA) is a flexible
computing architecture that bridges the gap between Appli-
cation Specific Integrated Circuits (ASIC) and General Pur-
pose Processors (GPP) by providing a customizable hard-
ware fabric capable of implementing wide range of appli-
cations. FPGA designs trade the performance of ASICs for
flexibility and fabrication costs[20].

Logic
Block

Connection
Block

I/O

Switch
Block

Figure 1. The typical structure of a island-style FPGA.

The basic structure of a FPGA is a regular mesh of logic
blocks interconnected by a reconfigurable routing architec-
ture. In the case of Island-style FPGAs the routing resources
are evenly distributed throughout the mesh, the logic block
usually having routing channels all around, see Figure 1. 4

For FPGA physical-synthesis, a number of tools like
VPR[3] and Madeo[21] aim at providing generic frame-
works targeting reconfigurable architecture. They are based
on high-level models, which ease the architecture and appli-
cation description (based on specific DSLs[37]), and using

4 In the scope of this paper when we say FPGA we are actually meaning
Island-style FPGA

generic heuristics (simulated annealing[18] - placement) and
algorithms (Pathfinder[32] - routing) they automate the ap-
plication mapping on the FPGA architectures. The principal
limitation of these tools is the difficulty to extend them func-
tionally by plugging-in new algorithms.

2.2.3 Madeo and software evolution problems
Madeo[24] is a design suite for the exploration of reconfig-
urable architectures. It includes a modeling environment that
supports multi-grained, heterogeneous architectures with
irregular topologies. Madeo framework initially allows to
model FPGA architectures. The architecture characteristics
are represented as a common abstract model. Once the archi-
tecture is defined, the Madeo CAD tools can be used to map
a target netlist on the architecture. Madeo embeds placement
and routing algorithms (the same as VPR[3]), a bitstream
generator, a netlist simulator, and a physical layout genera-
tor. It supports architectural prospection and very fast FPGA
prototyping. Several FPGAs have been modeled, including
some commercial architectures (such as Xilinx Virtex fam-
ily), and prospective ones (such as STMicro LPPGA). Based
on Madeo infrastructure further research projects emerged
such as DRAGE[40], that virtualizes the hardware platform
and produces physical layouts as VHDL descriptions.

Figure 2. Island style FPGA in Madeo

The Madeo infrastructure has three parts that interact
closely (bottom-up):
• Domain model and its associated generic tools. The rep-

resentation of practical architectures on a generic model
enables sharing of basic tools such as place and route
(P&R), allocation, circuit edition[21]. Figure 2 illustrates
MADEO on an island style FPGA. Specific atomic re-
sources, such as operators or emerging technologies, can
be merged with logic, since the framework is extensible.

• High-level logic compiler (HLLC). This compiler pro-
duces circuit netlists associated to high-level functional-

ities mapped to specific technology models. Leveraging
object-oriented programming flexibility in terms of oper-
ators and types, the HLLC produces primitives for arbi-
trary arithmetic or symbolic computing.

• System and architecture modeling.The framework en-
ables the description of static and dynamic aspects spe-
cific to different computing architectures, like: logic
primitives, memory, processes, hardware-platform man-
agement, and system activity.

The compiler uses logic generation to produce configura-
tions, binds them to registers or memories, and produces a
configured application. The control over the place and route
tools enables building complex networks of fine or medium
grain elements.

3. Model-based EDA in Smalltalk
In 1996, when the first developments of the Madeo frame-
work began, object oriented (OO) software for EDA could
not be imagined. The executing environments provided by
virtual machines was considered too slow for solving the
hard combinatorial optimization problems of circuit de-
sign. The journey of creating a OO CAD framework for
FPGA design automation, using the Smalltalk environment,
was challenging. On the way we showed that dynamically
typed languages can serve for creating high density logic
designs[9, 42], we proposed the first virtual FPGA pro-
totyping environment[25] and we proved that, harnessing
the power of OO software design, we could create a flex-
ible yet competitive EDA toolkit that even today enables
breakthrough research in the field[22, 40]. Meanwhile OO
design became widely accepted by the EDA community
through languages like C++(i.e. systemC[39]) and Java(i.e.
JHDL[16]). But OO design suffers from a number of prob-
lems, common in software engineering, especially from a
software evolution perspective. As the target domain evolves
the software tools used modeling, simulation and reasoning
about the domain have to evolve accordingly. And with-
out a methodological approach for evolution, systems be-
come unmaintainable and, even more, functionality is lost
through numerous integration cycles. Model-driven engi-
neering promises a number of solutions for this problem by
abstracting and decoupling the different software artifacts,
most notably through the use of aspect-driven programming
and component-based design. In consequence, today we as-
sist at yet another step in the evolution of EDA industry, the
move towards model-driven and component based design,
especially in the context of embedded system development
and high-level synthesis.

During the last years Smalltalk world has undergone
tremendous evolutions, through truly open environment
like Pharo[4], language innovations such as the adoption
traits for fine-grained reuse[12], language boxes for embed-
ded DSLs[44] and runtime meta-modeling frameworks like

FAME[19]. Moose project experience report[13], as well as
our experience with Platypus[26] led us to create an agile
MDE-based prototype, targeting FPGA physical design au-
tomation, using the Smalltalk environment. Our goal is to
create an evolution-aware platform, relying on our legacy
code-base, that can evolve to accommodate new technologi-
cal requirements.

The most important aspects that need to be addressed by
such a toolkit are: domain modeling, domain-specific lan-
guages, code reuse, legacy and fast prototyping, and external
tools integration. In the following paragraphs we will review
each of these aspects and briefly present some Smalltalk
technologies that can address each issue.

Domain modeling is at the core of any EDA toolkit. It en-
ables the expression of domain specific aspects by creating
a common vocabulary that will then be exploited to model
different systems. In the context of rapidly changing IC tech-
nology, the domain model has to evolve rapidly, eventually
changing its internal structure. For addressing this problem
the FAME meta-modeling library[19] proposes a solution by
offering run-time access to the meta-information, appearing
in a meta-model. By creating a bidirectional causal connec-
tion between the meta-level and the implementation-level
the model updates can be reflected in-between the two lev-
els at runtime. In Section 3.1 we will present in details a
FAME-based abstract meta-model that is used throughout
our framework as a common base for creating the different
domain models needed.

Domain-specific languages are used extensively in the
context of circuit design automation. Their principal roles
are: describing the IC architecture (Hardware Description
Languages (HDL)), describing the different physical, tech-
nological, and design constraints, describing the functional
requirements, specifying test cases and objectives, describ-
ing the application netlists, etc. In the context of our frame-
work, currently, we have implemented a dozen different
parsers for interfacing with other tools and we have a pro-
prietary HDL used for FPGA architecture description and
instantiation. The SmaCC-based[6] parser descriptions are
difficult to modify according to the evolving needs of the
EDA field. The parser-combinator libraries such as Petit-
Parser along with the laguage-box concept implemented in
the Helvetia DSL development environment[44] provide a
new solution to this problem. Helvetia enables the seamless
creation of embedded DSLs, while PetitParser brings inheri-
tance to grammar specifications, thus offering the possibility
to isolate the grammar specifications from the abstract syn-
tax tree creation. These developments provide a smart way
for defining a concrete text-based syntax for the instantia-
tion of our domain models. It should be noted that due to
the high number of hardware modules included into a typ-
ical architecture, visual languages are not well suited for
the architecture description. Moreover IC designers are very
proficient using textual description languages.

Code reuse is the most important concern from a software
evolution point of view. OO methodology provides inheri-
tance and polymorphism as de-facto solutions for enabling
large-scale code reuse. With the adoption of traits[12], in
Smalltalk dialects such as Squeak and Pharo, the OO tool-
box for reuse gained a new tool. Traits are a mechanism for
fine-grained method reuse that decouples functional method
implementation from the object state.

Legacy and Fast prototyping As stated in the introduction,
a big issue lies in the reuse of our legacy code-base. More-
over, any evolution methodology has to enable incremental
development, such as to be able to go on using our environ-
ment during the whole evolution process. We bootstrapped
the prototype by reusing the MADEO project infrastruc-
ture, and incrementally moved towards our new MDE-based
framework. In Section 5 some of the evolution steps are pre-
sented as to illustrate our approach.

External tools integration is a high-level reuse mech-
anism by which tools developed by third-parties can be
integrated into the toolkit. Historically we have been us-
ing inter-process communication (via UnixProcess class)
and FFI (such as DLLCC) for executing external programs
and interfacing with our toolkit. The Alien FFI, proposed
for Newspeak language[5] and adopted by Pharo, provides
a new OO-friendly way of interfacing Smalltalk environ-
ment with the external world. Moreover, the transformation
metaphor, proposed for algorithm design, opens the toolkit
even more by enabling a fine-grained external tool reuse, via
the External atomic transformation.

The remaining part of this section presents our practical
approach for abstract domain modeling and a novel concep-
tual framework for designing and implementing algorithms
based on the transformation metaphor.

3.1 Fame-based Domain Modeling
From a modeling point of view most of the EDA tools are
structured around hierarchical models appearing at different
levels of abstraction. These models are used to represent the
two principal axes of EDA:

• Application The applications are typically seen as com-
position of operators, that can be further broke-down into
simpler constructs towards elementary systems primi-
tives. The behavior specifications can be treated at differ-
ent abstraction levels: i.e. control data flow graphs, with
hierarchies representing processes and/or different func-
tions used to implement the application, combinatorial or
sequential logic, used to describe the system behavior as
composition of simple Boolean functions, etc.

• Hardware The hardware designers rely heavily on hier-
archical descriptions to simplify the integrated circuit de-
velopment. As for the applications, the hardware is de-
scribed hierarchically at different abstraction levels. At
the system level, for example, an IC can be seen as an ar-

ray of blocks, each of which implements a specific func-
tionality (i.e. processors, GPUs5, network modules, etc.).
Each of these blocks can then be decomposed into its own
building blocks (memory, logic, interconnection, etc.). At
the logic level, a digital circuit can be seen as a com-
position of logic blocks, implementing different func-
tions according to the Boolean equations characterizing
the blocks. At the circuit level the system is again speci-
fied hierarchically, using transistors, diodes, etc. as prim-
itives.

Based on these observations, we created an abstract meta-
model that is used to structurally describe our domain as a hi-
erarchical composition of primitive elements interconnected
together. This abstraction describes mainly a hierarchical an-
notated port-graph. Using the FAME metamodeling frame-
work was straightforward creating a Smalltalk implementa-
tion of this high-level domain-specific modeling language.

MH.Composite

MH.Hook

MH.Port MH.Pin

MH.Leaf

MH.ElementMH.Class

MH.Entity

MH.Property

MH.PinAlias

MH.Connection

name : string

owner properties

owner hooks

hooks

pins connection

connectionscontainer

co
nt

ai
ne

r

components

co
nt

ai
ne

r

references

inRef

1 *

*

*

*

*
*

*

1

1

1

11

1

Figure 3. A view of the core structure of the proposed meta-
model

In the proposed meta-model, see Figure 3, the domain
structure is captured as a Composite that contains one or
more Entity instances (called ”entities” from now on). En-
tity is an abstract construct specialized as Leaf and Com-
posite. The Leaf instances are domain primitives which are
viewed as the indivisible building blocks of more sophisti-
cated structures. The entities have hooks (Hook) which pro-
vide an external interface through which they can be inter-
connected together. The abstract Hook concept is specialized
as Pin and Port. The Pin element allows connection between
entities. It can be a physical contact, or a logical interface
depending on the specification level or on the refinement
degree. The role of Port instances is to group together and
structure the Pin instances, they can be seen as namespaces
structuring the access to particular pins. The Connection pur-
pose is to glue together the entities of a particular system by
linking pins together. These connections can be interpreted
as wires, communication channels, or simply as relations be-
tween entities.

All these concepts are refinements of the Class element
which owns Property instances. The Property represent dif-

5 graphical processing unit

ferent attributes particular to the modeled domain. Some ex-
amples of properties are: the position of an entity on a layout,
the capacity or resistance of a wire modeled as a Connection
instance, the logical value of a circuit pin represented as a
Pin instance.

The meta-model, presented in Figure 3, represents a com-
mon abstraction which can be used to specify any kind of
interconnected system having any number of hierarchical
components that present the system at different abstraction
levels. This core structure is refined in Section 4.1 to de-
scribe an island-style FPGA architecture and in Section 4.2
to capture the characteristics of a combinatorial circuit.

3.2 Transformation Metaphor for Algorithm Design
Besides structural domain modeling, algorithm design is the
most important aspect of any EDA toolkit. Since almost all
the optimization problems encountered in electronic CAD
tools are NP-hard in terms of complexity, most of the practi-
cal solutions rely on heuristics. Hence, the main concern of
EDA tools users and designers is the heuristic performance
in terms of execution time, memory requirements, and so-
lution optimality. It is commonly accepted for an EDA tool
to run for days or weeks on high-end machines having huge
memory resources. In terms of implementation, these opti-
mization heuristics are very complex. Most of them are im-
plemented in highly optimized C, for performance issues.

The Madeo framework itself relies on external tools,
mainly for logic synthesis and technology mapping. But it
implements generic heuristics for the physical design prob-
lem to assure the flexibility of the mapping. The idea is
that these generic heuristics can be used in the context of
different FPGA architecture with the minimum human inter-
vention for optimization goals parametrization.

To address the algorithm design problem in this study we
propose a technique that we call ”Transformation metaphor”.
This technique appears as a conceptual framework; the algo-
rithm designer now looks at the algorithm implementation
as it was a model transformation problem.

This approach mainly reifies the implicit tight depen-
dency between algorithms and domain models, through ex-
plicit transformations, isolating their respective concerns,
thus increasing the flexibility and the expressivity of our
toolkit.

In the transformation metaphor each algorithm (or heuris-
tic) is seen as a hierarchical composite transformation. Fig-
ure 4 presents the different types of transformations pro-
posed by this approach. The primitive transformation types
being: concern extraction, and atomic transformations.

The concern extraction represents the mapping from a
domain model to simpler models required by the algorithm
being implemented. The purpose of the concern extraction
is to decouple the domain specific details of the model from
the algorithm-specific details.

From an implementation perspective, the concern extrac-
tion is nothing more than implementing a visitor (accord-

Transformation

CompositeTransformation AtomicTransformation

InternalExternal

ConcernExtraction

visitor : GVisitor

container

components

*

1

Figure 4. Transformation metaphor model

ing to the visitor design pattern[15]) that will iterate over
the domain model extracting information and instantiating
an algorithm-specific model.

The atomic transformations represent actual algorithms
(or heuristic) needed to solve the problem. According to
the specific needs it can further decomposed in more fine
grain modules and composed as using the transformation
metaphor or it can be directly implemented in a program-
ming language on demand. The only requirement is to ex-
port clear interfaces so that it can be integrated as an atomic
transformation in the framework.

This approach has the advantage of being able to inte-
grate external tools implemented using any programming
language and/or computing model. Currently we are work-
ing on formalizing these concepts into a concrete Smalltalk
based transformation engine, which will be able to provide
the users with an environment for algorithm design and inte-
gration into domain specific tool-flows.

4. Smalltalk MDE: Applications to FPGA
Physical Design

The purpose of this section is to show how the Smalltalk-
based MDE methodology (presented in the previous section)
is used in the context of the FPGA physical design.

The physical design step is responsible for allocating all
design components for creating the configuration bitstream
for FPGAs. This means that each gate of the application
netlist will be assigned a spatial location (placement). Then,
the interconnection signals will be reified using appropriate
routing structures. Physical design has a direct impact on the
circuit characteristics (performance, area, power, etc). The
main steps of physical design are: partitioning, floorplan-
ning, placement, and routing[17].

Figure 5 shows a typical FPGA physical synthesis flow.
It starts from the description of a particular FPGA architec-
ture as an architectural model (ArchM) instance, and a target
application as an application model (AppM) instance. These
models are domain specific, fully independent from any al-
gorithms that are used for physical design. The output is a
refined ArchM instance, configured to implement the AppM
instance.

Application Model

Partitioning

Floorplanning

Placement

Routing

Architecture Model

Placed And Routed Architecture

Figure 5. A standard physical design flow. The rectangles
represent models, while the ellipses represent algorithms.

In the following sections we introduce two different spe-
cializations of the hierarchical port-graph model, introduced
in the Section 3.1, the ArchM and the AppM. Then in Sec-
tion 4.3 we present the tool-flow modeling methodology
based on the ”transformation metaphor”, used for imple-
menting the four steps of the FPGA physical design flow.

4.1 Island style FPGA model
To capture the particularities of FPGA architectures (see
Figure 1), the meta-model, presented in Section 3.1, was re-
fined. Figure 6 shows the domain-specific concepts added.
Using this meta-model the FPGAs are modeled based on
3 primitives (specializations of MHLeaf): Logic Block,
Switch, and Connection Block. LogicBlock instances repre-
sent the programmable logic blocks which provide the basic
computation and storage elements. The routing architecture
is modeled using Switch and ConnectionBlock instances.
These primitives contain a number of internalConnections
that specify the way their pins are connected internally (see
Figure 7). Tile instances aggregate these primitives into log-
ical bricks which are replicated regularly to form a Cluster.
The primitive’s pins are aliased at the tile level and cluster
level, using InterfacePin instances, to expose the possible
connection points.

Figure 7 presents a view of the principal types of internal
connections. HardConnect can be seen as a direct connec-
tion between components without any physical property (it
is used for example to represent long wires which logically
are composed of different wire segments, the connection
between these wire segments is a HardConnect instance).
Wire represents a physical wire. ProgrammableConnect is
an abstract representation of electrically configurable com-
ponents.

Figure 6. A simplified view of the Island-style FPGA ex-
tension of the core meta-model

Figure 7. Connection hierarchy

In our framework the FPGA (re-)configuration process is
seen from two different perspectives:

• Fine-grained configuration, that represents the detailed
configuration of all available resources. The target FPGA
configuration bitstream is generated based on these in-
formation. At this level all details of the target FPGA are
captured, and set in the final configuration state.

• Functional configuration, that represents a an abstract,
functional view of the fine-grain configurations. This
view is used to speed up some of the physical design
algorithms by providing them with a condensed repre-
sentation of the target architecture. i.e. at this level the
wires in a routing channel are seen as a virtual connec-
tion having a certain capacity and an occupancy.

For representing the configuration state of any FPGA el-
ement we rely on using a configuration controller described
based on the state-machine design pattern (the shaded area
in Figure 7). These fine-grain controllers represent the real
configurability of each physical component and are managed
as a whole based on a global configuration controller. The
global configuration controller corresponds to the physical
configuration controller present on the FPGA circuit.

The FPGA meta-model (ArchM) presented in this sec-
tion is not intended to exhaustively cover the programmable
architecture design concepts, nor to be used as a real-life
FPGA meta-model but rather is a simplified version that cap-
ture the basic properties of interest for the purpose of this
study.

4.2 Combinatorial Logic Meta-Model
In this section we present another refinement of the meta-
model, presented in Section 3.1, this time focusing on hier-
archically description of combinatorial logic.

In digital electronics, combinatorial logic is a type of
digital logic implemented by Boolean circuits where the
logic network computes a pure function based solely on the
inputs. As opposed to sequential logic that relies on memory
elements to implement state that is used, besides the inputs,
for computing the outputs.

Figure 8. Combinatorial Logic extension of the core meta-
model

The combinatorial logic meta-model (AppM), presented
in Figure 8, uses two-level single-output logic functions
(LogicGate) to model the application netlist.

As for the FPGA model, presented in the previous sec-
tion, only a simplified view of Combinatorial Logic meta-
model is presented.

4.3 Tool-flow Modeling
The flow is an endogenous transformation realized via four
composite transformations (see Figure 5): partitioning, floor-
planning, placement, and routing. Each of these four trans-
formations is a composition of more-elementary transforma-
tions. Thus, the physical synthesis tool flow is a hierarchi-
cal directed acyclic graph (DAG) of transformations, where
the nodes represent the transformations to be done, and the
edges represent the dependencies between the tools. The ex-
ecution of the transformations happens in topological order
from the DAG inputs (ArchM and AppM instances) to the
outputs (AppM instance mapped on the ArchM instance).

Tool

ModelIn ModelOut

ToolFlow

use
pro

duc
e

in out* *

tools *

Transformation

trans1

Figure 9. The abstract toolflow meta-model

Figure 9 shows the abstract toolflow model. A ToolFlow
instance takes a number of ModelIn as input and produces

a number of ModelOut as output using any number of tools
to do it. Each tool is uniquely associated with a Transforma-
tion (either composite, or atomic). In our case the a ToolFlow
instance is created with AppM and ArchM models as in-
puts (in) and four Tool instances corresponding to the four
automation steps. The result produced would be a refined
ArchM instance.

The principal advantage of this flow is the capacity to eas-
ily replace any of the physical synthesis algorithms with dif-
ferent implementations, with no constraint on the implemen-
tation language or formalism. But this also has a drawback,
the high number of simple transformations (concern extrac-
tion) needed to implement the flow. However, such a view
of the physical design automation, that isolates and encap-
sulates the different steps of the flow, poses the bases for
future standardization, which that can cut down the number
of intermediate transformations.

5. From Legacy to MDE toolkit – Successful
Experiences

This section provides an account for some of the steps we
followed towards the MDE-based framework. Moreover it
shows the flexibility of the approach as the environment
remained usable during the whole evolution process.

5.1 Improving on Legacy – First steps
The first modifications that were integrated in the toolkit fo-
cused on improving some of the optimization routines al-
ready present in our legacy code-base, namely the floorplan-
ning and routing routines.

In the case of the floorplanning routine, we have chosen
to replace the TCG-based[29] heuristic present by an im-
proved version relying on a different floorplan representa-
tion, namely TCG-S[30]. From the implementation perspec-
tive we tried to decouple as much as possible the heuris-
tic from our domain models, so that it can be reused in
other context with no modifications. The integration into
the toolkit was done by redirecting the automation flow to-
wards the newly created module. Concern extraction was
used to instantiate the TCG-S specific floorplan model from
the AppM using ArchM geometrical information. Once the
floorplan model instantiated, the optimization goals (met-
rics) where added as closures (Smalltalk blocks) indepen-
dent of the heuristic implementation.

For the routing routine we refactored the existing routing
algorithm (Pathfinder[32]) decoupling it from the architec-
tural model with which it had numerous dependencies, and
we created a transformation-based version. As for the TCG-
S algorithm, the architecture specific optimization goals are
set using closures. The results using this new implementa-
tion were impressive in terms of execution speed (over 40%
faster), principally due to the possibility to prune the rout-
ing resource graph, thus reducing considerably (≥50%) the
number of nodes explored during the execution. One nega-

tive aspect of using this approach is the increase in the mem-
ory footprint due to the duplication of some ArchM aspect
in the routing specific model.

5.2 Extensions for Nanoscale Physical Design
In [10, 27] the extensibility of the MADEO framework was
put to a test for the first time with the advent of emerging
technologies. The core concepts of the NASIC fabric[34],
see Figure 10, were introduced into the framework, and a
reconfigurable nanoscale architecture, called NFPGA, was
designed. This required to extend both the reconfigurable
architecture model and its associated tools in such a way that
NASIC can be modeled and programmed. Process that goes
through several steps:

Figure 10. Madeo viewer on an nanoscale tile instance

1. The generic model must evolve to describe new potential
components (nanogrid, nanowire, etc. . .) with specific
characteristics.

2. This generic model must be instantiated using a propri-
etary HDL. As the HDL expresses the model, any in-
depth change within the model leads to an evolution of
the HDL(i.e. new keywords).

3. Some algorithms must be adapted or substituted for
technology-specific counterparts while preserving the
API. For example, the logical functions are implemented
using a 2 level logic rather than FPGAs LUTs or proces-
sor µ-instruction.

More recently[48, 49] the methodology presented in this
study was used to propose a complete physical synthesis
tool-flow for a new nanoscale architecture template. As it
can be seen in the Figure 11 the Madeo toolkit legacy was

MadeoBlif

Sis

PLAMap
Placement

PLA Family Exploration
Layout

Architecture

Routing

Metrics

no yes

Figure 11. The R2DNasic CAD flow.

used for placement and routing (as well as for archM de-
scription, instantiation and visualization), external tools like
Sis[45], PLAMap[7] where seamlessly integrated with new
internal tools for pla family exploration, and metric comput-
ing. Different tool-flows were created using these tools, each
one having different optimization goals, and working on dif-
ferent architecture variants. Moreover by opening the tool-
box the design-space exploration (DSE) was bootstrapped
relying on standard reconfigurable place & route routines,
thus enabling a baseline evaluation which showed the need
for more optimized routing. Once the new routing algorithm
was developed it was integrated into a new tool-flow, spe-
cializing the baseline tool-flow via inheritance.

The main conclusion of this experiment is that using this
MDE approach effective incremental design-space explo-
ration is enabled, and a new tool-flow exploration axis is
added to the typical application/architecture trade-off, while
the tool-flow specialization reduces the development effort.

5.3 Refactoring Domain-Models
The most extensive evolution of our legacy code-based was
the replacement of old domain-specific OO models with
a newly engineered set of FAME-based domain models,
relying on the hierarchical port-graph abstraction, described
in Section 3.1. The preservation of legacy functionality is the
principal constraint in this case.

To this purpose we engineered the new models to repli-
cate the old-model entities and then we merged the two mod-
els in such a way to factorize the available functionality of
the two.

Two automated methods of merging the two models were
devised: copydown method, and doesnotunderstand method.
They are both explained in detail in the following paragraphs
along with their advantages and constraints.

CopyDown Method Starts by inlining the calls to super
methods in order to obtain inheritance hierarchy indepen-
dent methods that can be safely copied to all subclasses of
a specific node. After the inlining step the CopyDown step
proceeds where all superclass methods will be copied recur-
sively to all subclasses. The next step is to remove the du-
plicated instance variables from the old model. This step is
required because the new model already contains some in-
stance variables and they will be accessible from the future
superclasses. This step being done the old class hierarchy is
destroyed, and the new designed superclasses are assigned

meth1

attr1
attr2

ClassA

meth2

ClassB ClassC
attr3

meth3
meth4

meth5
attr4

ClassD

meth2
meth1

ClassB

ClassA

meth1

meth4
meth3
meth1

ClassC

meth5
meth4
meth3
meth1

ClassD

attrX
m1

AbstractC

attr1
attr2

ClassA

ClassB ClassX

attr3
ClassC

attr4
ClassD

attrX
m1

AbstractC

attr1
attr2

ClassA

ClassB ClassX

attr3
ClassC

attr4
ClassD

Old Model

Isomorph with the old model
New Model

Result of the copy down
refactoring process

Figure 12. Example model transformation using Copy-
Down method

to the old model classes. Because the two models have some
classes with identical names the name clash is prevented
by isolating the classes in different namespaces. Figure 12
shows the result of this refactoring method applied on an ex-
ample. The different colors in class representation represent
the different namespaces that isolate the classes with iden-
tical name. The rightmost diagram shows the method dupli-
cation through the classes of the old hierarchy in order to
preserve their inherited functionality.

This refactoring method is a good solution to the model-
refactoring problem encountered in the development of the
framework since the old functionality is maintained, the old
applications developed around the old model continue work-
ing without any modification, and the new model can be used
freely without any execution delay. Another advantage of
this method is that it does not change the execution mecha-
nism of the underlying platform, and so it can be used almost
unmodified with all OO languages. Still this method has its
drawbacks principally because the classes of the old model
contain duplicated behavior. This duplication decreases the
maintainability of the system, and renders the old model en-
tities less comprehensible.

A solution can be the introduction of another refactoring
step that will push up in the new hierarchy the equivalent
methods.

But, despite its drawbacks, this method can still be used
provided that some necessary precautions are taken:

• If the tools using the old model are mature enough so they
can be used in their actual state without modifications;

• If the developers intention is to replace the old model
with the new one in all the tools using it. In this case
the CopyDown method can be used as an intermediate
evolution step, where some tools are ported to the new
model and others are still using the old one.

DoesNotUnderstand Method Another method for merg-
ing the two models into one directly perform the last two
steps of the previous technique (remove the instance vari-
ables; Cut the superclass link. Add the new classes as the su-
perclass of all old classes) without copying-down the super-
class methods. The old hierarchy must be stored (in a Dic-
tionary for example) in order to be able to replicate the old
hierarchy method inheritance. To be able to use the behavior
declared in the old model classes, the #doesNotUnderstand
method will be redefined. Once the error message is inter-
cepted we start searching in the old inheritance hierarchy to
find the implementation class of that message. If we find it
we send the message to that class and return the result to the
sending class. If the message was not found we simply throw
the ”does not understand” error.

This method solves the previous problems related to the
message duplication throughout the old hierarchy. But it
comes with new drawbacks like:

• The execution mechanism of the object oriented frame-
work must be modified. While this is possible in an open
context like Smalltalk in most object-oriented environ-
ments will be difficult to implement this method.

• Since all missing methods need to be searched in the old
inheritance hierarchy this will add some overhead to the
overall execution of code using this model.

• If the new model classes implement one of the methods
implemented in a class of the old hierarchy, say class
X, all subclasses of the class X will execute the new
implementation of the method instead of executing the
implementation in class X. Thus rendering the tools using
the old model unusable. That happens because the ”does
not understand” error will not be triggered once a method
with an identical signature is found in the new inheritance
hierarchy.

At the end we want to emphasize that the evolution pro-
cess presented in this study may not be possible in non-
Smalltalk environments mainly due to the lack of reflectiv-
ity, openness and flexibility. But at the same time imposing
a certain development methodology might be hard mainly
due to the same reasons. At times during the experiences de-
scribed in this section we found ourselves wanting to hack
our way into simpler (or faster) solutions by instantiating
new objects as needed, creating unnecessary dependencies
or using shared state just because its possible.

In conclusion, we believe that, for a Smalltalk developer,
at times it is best to resist the temptation of instant gratifi-
cation and take a step back to reflect on the overall system
design.

6. Conclusion and Future Works
The Madeo FPGA toolkit served as trustworthy physical de-
sign back-end for enabling our research group to innovate
in the challenging field of EDA. But after 15 years of var-

ious project specific modifications, and numerous integra-
tion cycles our environment started to degrade, and at time
functionality was lost. We identified that an outdated, ad-
hoc prototype-driven development process was at the core
of these degradations.

In this study we present a solution to this problem based
on a mix of MDE methodology coupled with the last inno-
vation of the Smalltalk community. Practically our approach
relies on the FAME executable meta-modeling framework
the development of domain-specific models, and the decou-
pling of the optimization algorithms from these models us-
ing the ”transformation” metaphor.

Applying this methodology to our legacy code-base not
only improves the software architecture of our solution, but
it also opens the toolkit enabling plug-and-play algorithm
reuse. Relying on these developments we were able to easily
prototype and test different automated solutions targeting
new nanoscale architectures.

In conclusion, we believe that the key to taming the com-
plexity of today IC design is our capacity to reuse the results
of the last 50 years of high-end EDA research.

In the future, we plan to improve our methodology by
formalizing our transformation model and by developing
a transformation engine able to harness the advantages of
MDE while minimizing its apparent shortcomings most no-
tably in terms of memory consumption.

References
[1] C. Atkinson and T. Kühne. Concepts for comparing model-

ing tool architectures. In L. C. Briand and C. Williams, ed-
itors, MoDELS, volume 3713 of Lecture Notes in Computer
Science, pages 398–413. Springer, 2005.

[2] C. Atkinson, M. Gutheil, and B. Kennel. A flexible infrastruc-
ture for multilevel language engineering. IEEE Trans. Soft-
ware Eng., 35(6):742–755, 2009.

[3] V. Betz, J. Rose, and A. Marquardt, editors. Architecture
and CAD for Deep-Submicron FPGAs. Kluwer Academic
Publishers, Norwell, MA, USA, 1999. ISBN 0792384601.

[4] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cas-
sou, and M. Denker. Pharo by Example. Square
Bracket Associates, 2009. ISBN 978-3-9523341-4-0. URL
http://pharobyexample.org.

[5] G. Bracha, P. Ahe, V. Bykov, Y. Kashai, and E. Miranda. The
newspeak programming platform. Technical report, Cadence
Design Systems, 2008.

[6] J. Brant and D. Roberts. SmaCC, a
Smalltalk compiler-compiler, 2011. URL
http://www.refactoryworkers.com/SmaCC.

[7] D. Chen, J. Cong, M. Ercegovac, and Z. Huang. Performance-
driven mapping for cpld architectures. Computer-Aided De-
sign of Integrated Circuits and Systems, IEEE Transactions
on, 22(10):1424 – 1431, oct. 2003. ISSN 0278-0070.

[8] S. Cranefield and M. Purvis. UML as an Ontology Modelling
Language. In In Proceedings of the Workshop on Intelligent

Information Integration, 16th International Joint Conference
on Artificial Intelligence (IJCAI-99, pages 46–53, 1999.

[9] C. Dezan, L. Lagadec, and B. Pottier. Object oriented ap-
proach for modeling digital circuits. In Microelectronic Sys-
tems Education, 1999. MSE ’99. IEEE International Confer-
ence on, pages 51 –52, 1999.

[10] C. Dezan, C. Teodorov, L. Lagadec, M. Leuchtenburg,
T. Wang, P. Narayanan, and A. Moritz. Towards a framework
for designing applications onto hybrid nano/cmos fabrics. Mi-
croelectron. J., 40(4-5):656–664, 2009. ISSN 0026-2692.

[11] S. Ducasse and T. Gı̂rba. Using Smalltalk as a reflective exe-
cutable meta-language. In International Conference on Model
Driven Engineering Languages and Systems (Models/UML
2006), volume 4199 of LNCS, pages 604–618, Berlin, Ger-
many, 2006. Springer-Verlag.

[12] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and
A. P. Black. Traits: A mechanism for fine-grained reuse.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 28(2):331–388, Mar. 2006. ISSN 0164-0925.

[13] S. Ducasse, T. Girba, A. Kuhn, and L. Renggli. Meta-
environment and executable meta-language using Smalltalk:
an experience report. Software and Systems Modeling, 8:5–
19, 2009. ISSN 1619-1366.

[14] A. Gamatié, É. Rutten, H. Yu, P. Boulet, and J.-L. Dekeyser.
Model-Driven Engineering and Formal Validation of High-
Performance Embedded Systems. Scalable Computing: Prac-
tice and Experience (SCPE), 10, 2009.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

[16] B. Hutchings, P. Bellows, J. Hawkins, S. Hemmert, B. Nelson,
and M. Rytting. A cad suite for high-performance fpga design.
In Proceedings of the Seventh Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, FCCM
’99, pages 12–, Washington, DC, USA, 1999. IEEE Computer
Society.

[17] A. Kahng, J. Lienig, I. Markov, and J. Hu. VLSI Physical De-
sign: From Graph Partitioning to Timing Closure. Springer,
2011.

[18] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization
by simulated annealing. Science, 220:671–680, 1983.

[19] A. Kuhn and T. Verwaest. FAME, a polyglot library for
metamodeling at runtime. In Workshop on Models at Runtime,
pages 57–66, 2008.

[20] I. Kuon, R. Tessier, and J. Rose. Fpga architecture: Survey and
challenges. Found. Trends Electron. Des. Autom., 2:135–253,
February 2008. ISSN 1551-3076.

[21] L. Lagadec. Abstraction and modélisation et outils de cao
pour les architectures reconfigurables. PhD thesis, Université
de Rennes 1, 2000.

[22] L. Lagadec and D. Picard. Software-like debugging method-
ology for reconfigurable platforms. In Parallel Distributed
Processing, 2009. IPDPS 2009. IEEE International Sympo-
sium on, pages 1 –4, may 2009.

[23] L. Lagadec and D. Picard. Smalltalk debug lives in the matrix.
In International Workshop on Smalltalk Technologies, IWST
’10, pages 11–16, New York, NY, USA, 2010. ACM. ISBN
978-1-4503-0497-9.

[24] L. Lagadec and B. Pottier. Object-oriented meta tools for
reconfigurable architectures. In Reconfigurable Technology:
FPGAs for Computing and Applications II, SPIE Proceedings
4212, 2000.

[25] L. Lagadec, D. Lavenier, E. Fabiani, and B. Pottier. Plac-
ing, routing, and editing virtual fpgas. In G. Brebner and
R. Woods, editors, Field-Programmable Logic and Applica-
tions, volume 2147 of Lecture Notes in Computer Science,
pages 357–366. Springer Berlin / Heidelberg, 2001.

[26] L. Lagadec, D. Picard, and B. Pottier. Dynamic System Re-
configuration in Heterogeneous Platforms, chapter 13. Spatial
Design : High Level Synthesis. Springer, 2009.

[27] L. Lagadec, B. Pottier, and D. Picard. Toolset for nano-
reconfigurable computing. Microelectronics Journal, 40(4-
5):665 – 672, 2009. European Nano Systems (ENS 2007);
International Conference on Superlattices, Nanostructures and
Nanodevices (ICSNN 2008).

[28] L. Lavagno, G. Martin, and L. Scheffer. Electronic De-
sign Automation for Integrated Circuits Handbook - 2 Volume
Set. CRC Press, Inc., Boca Raton, FL, USA, 2006. ISBN
0849330963.

[29] J.-M. Lin and Y.-W. Chang. Tcg: a transitive closure graph-
based representation for non-slicing floorplans. In Proceed-
ings of the 38th annual Design Automation Conference, DAC
’01, pages 764–769, New York, NY, USA, 2001. ACM. ISBN
1-58113-297-2.

[30] J.-M. Lin and Y.-W. Chang. TCG-S: Orthogonal Coupling
of P*-Admissible Representations for General Floorplans. In
DAC ’02: Proceedings of the 39th conference on Design au-
tomation, pages 842–847, New York, NY, USA, 2002. ACM.
ISBN 1-58113-461-4.

[31] G. Martin, L. Lavagno, and J. Louis-Guerin. Embedded uml:
a merger of real-time uml and co-design. In Proceedings
of the ninth international symposium on Hardware/software
codesign, CODES ’01, pages 23–28, New York, NY, USA,
2001. ACM.

[32] L. McMurchie and C. Ebeling. Pathfinder: A negotiation-
based performance-driven router for fpgas. In Field-
Programmable Gate Arrays, 1995. FPGA ’95. Proceedings of
the Third International ACM Symposium on, pages 111 – 117,
1995.

[33] T. Mens and P. V. Gorp. A taxonomy of model transforma-
tion. Electronic Notes in Theoretical Computer Science, 152:
125 – 142, 2006. ISSN 1571-0661. Proceedings of the In-
ternational Workshop on Graph and Model Transformation
(GraMoT 2005).

[34] C. A. Moritz, T. Wang, P. Narayanan, M. Leuchtenburg,
Y. Guo, C. Dezan, and M. Bennaser. Fault-Tolerant Nanoscale
Processors on Semiconductor Nanowire Grids. IEEE Trans-
actions on Circuits and Systems I, special issue on Nanoelec-
tronic Circuits and Nanoarchitectures, november 2007.

[35] P. A. Muller, F. Fleurey, and J. M. Jézéquel. Weaving Exe-
cutability into Object-Oriented Meta-Languages. In LNCS,
Montego Bay, Jamaica, Oct. 2005. MODELS/UML’2005,
Springer.

[36] O. Nierstrasz, S. Ducasse, and T. Gı̂rba. The story of Moose:
an agile reengineering environment. In Proceedings of the
European Software Engineering Conference (ESEC/FSE’05),
pages 1–10, New York NY, 2005. ACM Press. ISBN 1-59593-
014-0. Invited paper.

[37] N. Oliveira, M. J. V. Pereira, P. R. Henriques, and D. da Cruz.
Domain specific languages: A theoretical survey. In Proceed-
ings of the 3rd Compilers, Programming Languages, Related
Technologies and Applications (CoRTA’2009), 2009.

[38] omg. Meta Object Facility (MOF) Core Specification Version
2.0, 2006.

[39] P. R. Panda. Systemc: a modeling platform supporting mul-
tiple design abstractions. In Proceedings of the 14th interna-
tional symposium on Systems synthesis, ISSS ’01, pages 75–
80, New York, NY, USA, 2001. ACM. ISBN 1-58113-418-5.
doi: http://doi.acm.org/10.1145/500001.500018.

[40] D. Picard. Méthodes et outils logiciels pour l’exploration
architecturale d’unité reconfigurable embarqueés. PhD thesis,
Université de Bretagne Occidentale, Brest, 2010.

[41] A. Plantec and V. Ribaud. PLATYPUS : A STEP-based
Integration Framework. In 14th Interdisciplinary Information
Management Talks (IDIMT-2006), pages 261–274, Tchèque,
République, Sept. 2006.

[42] B. Pottier and J.-L. Llopis. Revisiting smalltalk-80 blocks: a
logic generator for fpgas. In FPGAs for Custom Computing
Machines, 1996. Proceedings. IEEE Symposium on, pages 48
–57, apr 1996.

[43] I. R. Quadri, H. Yu, A. Gamatie, E. Rutten, S. Meftali, and J.-
L. Dekeyser. Targeting reconfigurable fpga based socs using
the uml marte profile: from high abstraction levels to code
generation. International Journal of Embedded Systems, 4
(3/4):204–224, 2010.

[44] L. Renggli. Dynamic Language Embedding With Homoge-
neous Tool Support. Phd thesis, University of Bern, Oct. 2010.

[45] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai,
A. Saldanha, H. Savoj, P. Stephan, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. SIS: A System for Sequential Cir-
cuit Synthesis. Technical Report UCB/ERL M92/41, EECS
Department, University of California, Berkeley, 1992.

[46] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks.
EMF: Eclipse Modeling Framework (2nd Edition). Addison-
Wesley Professional, 2 edition, Jan. 2008.

[47] B. Stroustrup. What is object-oriented programming? Soft-
ware, IEEE, 5(3):10 –20, may 1988. ISSN 0740-7459. doi:
10.1109/52.2020.

[48] C. Teodorov and L. Lagadec. Fpga sdk for nanoscale
architectures. In 6th International Workshop on Re-
configurable Communication-centric Systems-on-Chip (Re-
CoSoC’11), 2011.

[49] C. Teodorov, P. Narayanan, L. Lagadec, and C. Dezan. Reg-
ular 2d nasic architecture and design space exploration. In

Nanoscale Architectures, IEEE / ACM International Sympo-
sium on (NanoArch’11), 2011.

[50] C. Teodorov, D. Picard, and L. Lagadec. Fpga physical-design
automation using model-driven engineering. 6th Interna-
tional Workshop on Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC’11) 6th International Workshop
on Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC’11), 2011.

[51] Y. Vanderperren and W. Dehaene. UML 2 and SysML: An
Approach to Deal with Complexity in SoC/NoC Design. In
E. European design and Automation Association, editors, De-
sign, Automation and Test in Europe DATE’05, volume 2,
pages 716–717, Munich Allemagne, 03 2005. Submitted on
behalf of EDAA (http://www.edaa.com/).

[52] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-P.
Diguet. A co-design approach for embedded system modeling
and code generation with uml and marte. In Proceedings of
the Conference on Design, Automation and Test in Europe,
DATE ’09, pages 226–231, 3001 Leuven, Belgium, Belgium,
2009. European Design and Automation Association.

IWST 2011 Selected papers

74

Efficient Proxies in Smalltalk

Mariano Martinez Peck12 Noury Bouraqadi2 Marcus Denker1
Stéphane Ducasse1 Luc Fabresse2

1RMoD Project-Team, Inria Lille–Nord Europe / Université de Lille 1
2Université Lille Nord de France, Ecole des Mines de Douai

marianopeck@gmail.com, {stephane.ducasse,marcus.denker}@inria.fr,
{noury.bouraqadi,luc.fabresse}@mines-douai.fr

Abstract
A proxy object is a surrogate or placeholder that con-
trols access to another target object. Proxy objects are a
widely used solution for different scenarios such as remote
method invocation, future objects, behavioral reflection, ob-
ject databases, inter-languages communications and bind-
ings, access control, lazy or parallel evaluation, security,
among others.

Most proxy implementations support proxies for regular
objects but they are unable to create proxies for classes or
methods. Proxies can be complex to install, have a signif-
icant overhead, be limited to certain type of classes, etc.
Moreover, most proxy implementations are not stratified at
all and there is no separation between proxies and handlers.

In this paper, we present Ghost, a uniform, light-weight
and stratified general purpose proxy model and its Smalltalk
implementation. Ghost supports proxies for classes or meth-
ods. When a proxy takes the place of a class it intercepts
both, messages received by the class and lookup of meth-
ods for messages received by instances. Similarly, if a proxy
takes the place of a method, then the method execution is
intercepted too.

Keywords Object-Oriented Programming and Design »

Message passing control » Proxy » Interception » Object
Swapping » Smalltalk

1. Introduction
A proxy object is a surrogate or placeholder that controls
access to another target object. A large number of scenarios
and applications [11] have embraced and used the Proxy
Design Pattern [12].

Proxy objects are a widely used solution for different sce-
narios such as remote method invocation [24, 25], distributed

[Copyright notice will appear here once ’preprint’ option is removed.]

systems [3, 20], future objects [23], behavioral reflection
[10, 15, 29], aspect-oriented programming [16], wrappers
[6], object databases [7, 19], inter-languages communica-
tions and bindings, access control and read-only execution
[1], lazy or parallel evaluation, middlewares like CORBA
[13, 17, 28], encapsulators [22], security [27], among oth-
ers.

Most proxy implementations support proxies for regular
objects (instances of common classes) only. Some of them,
e.g., Java Dynamic Proxies [11, 14] even requires that at
creation time the user provides a list of Java interfaces for
capturing the appropriate messages.

Creating uniform proxies for not only regular objects,
but also for classes and methods has not been considered.
In existing work, it is not possible for a proxy to take the
place of a class and a method and still intercept messages,
in order to perform operations such as logging, swapping or
remote class interaction. This weakness strongly limits the
applications of proxies.

In addition, traditional implementations (based on error
handling [22]) result in non stratified proxies: not all the
proxified API messages can be trapped leading to severe
limits, and there is no clear division between trapping a
message and handling it, i.e., there is no separation between
proxies and handlers. Trapping a message is intercepting it,
and handle a message means to do something in particular
with such interception. The handling actions depends on
the user needs, hence they are defined by the user of the
framework. Bracha et al. [5] defined stratification in the
field of reflection as the following statement: “meta-level
facilities must be separated from base-level functionality”.
The same applies for proxies, where instead of meta-level
facilities there are trapping or intercepting facilities [27].

Another interesting property of proxy implementations
is memory footprint. As any other object, proxies occupy
memory and there are cases in which the number of proxies
and their memory footprint becomes a problem.

In this paper, we present Ghost, a uniform, light-weight
and stratified general purpose proxy model and its imple-
mentation in Pharo Smalltalk [4]. In addition, Ghost sup-
ports proxies for classes or methods. This means that it is
not only possible to create a proxy for a class or a method

1 2011/8/14

but also that such proxy takes the place of the target orig-
inal class or method, intercepts messages without crashing
the system. If a proxy takes the place of a class it intercepts
both, messages received by the class and lookup of meth-
ods for messages received by instances. Similarly, if a proxy
takes the place of a method, then the method execution is in-
tercepted too. Ghost provides low memory consuming prox-
ies for regular objects as well as for classes and methods.

The contributions of this paper are:

• Describe and explain the common proxy implementation
in dynamic languages and specially in Smalltalk.

• Define a set of criteria to evaluate and compare proxies
implementations.

• Present Ghost, a new proxy model and implementation
which solves most of the proxy’s problems in a uniform,
light-weight and stratified way.

• Evaluate our solution with the defined criteria.

The remainder of the paper is structured as follows: Sec-
tion 2 defines and unifies the vocabulary and roles that are
used throughout the paper, and then it presents the list of
criteria used to compare different proxy implementations.
Section 3 describes the typical proxy implementation and
by evaluating it against the previously defined criteria, it
presents the problem. Section 4 introduces and discusses the
Ghost model, and then evaluates the needed language and
VM support. An introduction to Smalltalk reflective model
and its provided hooks is explained by Section 5. Ghost im-
plementation is presented in Section 6, which also provides
an evaluation of Ghost implementation based on the defined
criteria. Finally, in Section 7 related work is presented, be-
fore concluding in Section 8.

2. Vocabulary and Proxy Evaluation Criteria
2.1 Vocabulary and Roles
For sake of clarity, we define here the vocabulary used
throughout this paper. We hence make explicit entities in
play and their respective roles.

Target. It is the original object that we want to proxify, i.e.
the object that will be replaced by a proxy.

Client. This is an object which uses or holds a reference
on the target object.

Interceptor. It is an object whose responsibility is to in-
tercept messages that are sent to it. It may intercept some
messages or all of them.

Handler. The handler is responsible of handling messages
caught by the interceptor. By handling we refer to whatever
the user of the framework wants to do with the interceptions,
e.g., logging, forwarding the messages to the target, control
access, etc.

One implementation can use the same object for taking
the roles of interceptor and handler. Hence, the proxy plays
as interceptor and also as handler. In another solution such

roles can be achieve by different object where the proxy
usually takes the role of interceptor.

2.2 Proxies Implementation Criteria
From the implementation point of view, there are criteria
that can be taken into account to compare and characterize a
particular implementation [10]:

Stratification. Stratification means that there is a clear sep-
aration between the proxy support and application function-
alities. With a stratified approach, all messages sent by the
application’s business objects to the proxy are intercepted.

The proxy API should not pollute the application’s names-
pace. In a truly stratified proxy, all messages received by a
proxy should be intercepted. This means that the handler
itself cannot send messages to the proxy. Not only the
handler cannot do that, but none other object in the system.
Having this stratification is important to achieve security
and to fully support transparency of proxified object for the
end-programmers [5].

Stratification also covers the design of the proxy. There
are two responsibilities in a proxy toolbox: 1) trapping or in-
tercepting messages (interceptor role) and 2) managing the
interception (handler role), i.e., performing actions once the
message is intercepted. In a stratified proxy framework the
first responsibility can be covered by a proxy itself, and the
second one by a handler. This means that proxies are just
traps to intercept messages. When they intercept a message
they just delegate to a handler, which does something in
particular with it, e.g., logging, access control, etc. Conse-
quently, different proxies instances can use the same or dif-
ferent handler instance.

Interception granularity. There are the following possibil-
ities:
• Intercept all messages sent to an object, even messages

not defined in the object API.
• Intercept only user defined messages.
• Intercept only messages imposed by the system.

With the last two options, there are messages that are not
intercepted and hence answered by the proxy itself. This
can be a problem because it is not possible to distinguish
messages sent to the proxy to ones that should be trapped.
For example, when a proxy is asked its class it must answer
not its own class but the class of the target object. Otherwise,
this can cause errors difficult to manage.

Object replacement. Replacement is making client objects
to reference the proxy instead of referencing the target. Two
cases can be distinguished. On the one hand, there are sce-
narios where some objects become new clients. So, they will
get a reference to a proxy instead of the reference to the tar-
get object. For example, for remote method invocation, tar-
gets are located in a memory space different from the clients
one. Therefore, clients can only hold references on proxies
to interact with targets. Messages sent by clients to proxies
will be handled and forwarded to remote targets.

2 2011/8/14

On the other hand, sometimes the target is an already
existing object which is pointed to by other objects in the
system and it needs to be replaced by a proxy, i.e., all objects
in the system which have a reference on the target should be
updated so that they point to the proxy instead. For instance,
for a virtual memory management we need to swap out
objects and to replace them by proxies. In this case, we need
to retrieve all objects which were pointing to the existing
unused object to now point to the proxy. We refer to this
functionally as object replacement.
Uniformity. We refer to the ability of creating a proxy for
any object (regular object, method, class, block, process. . .)
and replacing the object by the proxy.

Most proxy implementations support proxies only for
regular objects and without object replacement, i.e., proxies
cannot replace a class, a method, a process, etc, without
crashing the system. There can be not only more classes that
require special management but also more special objects that
require so. For example objects like nil, true, false, etc.

This is an important criteria since there are scenarios
where being able to create proxies for living runtime entities
is mandatory.
Transparency. A proxy is fully transparent if client objects
have no mean to find out whether they reference the target
or the proxy. .

One of the typical problems related to transparency is the
identity issue in cases where the proxy and the target are lo-
cated in the same memory space. Given that different objects
have different identities, a proxy’s identity is different from
the target’s identity. The expression proxy == target will an-
swer false, revealing hence the existence of the proxy. This
can be temporary hidden if there is object replacement be-
tween the target object and the proxy. When we replace all
references to the target by references to the proxy, clients
will only see the proxy. However, this "illusion" will be bro-
ken as soon as the target provides its reference as an answer
to a message or a parameter.

Another common problem is asking the class or a type of
an object since most of the times the proxy answers its own
type or class instead of the target’s one. The same happens
if there is special syntax or operators in the language such
Javascript’s “+”, “/”, “=”, “>”, etc. In order to have the
most transparent possible proxy, these situations should be
handled in such a way that the proxy behaves like the target.

Now the question is whether the identity of an object
should be controlled similarly to central messages such as
class. We believe that most of the time it is important that the
identity is treated similarly to messages, since code working
based on object identity should work the same whether the
object has been proxified or not. Now depending on the
language or optimization in place, identity is not treated as
a message but provided as a built in primitive, which means
that it can be difficult to offer proper identity swapping.
Efficiency. Proxy handling must be efficient from both
points of view: performance and memory usage. In addi-
tion, we can distinguish between installation performance

and runtime performance. For example, for installation, it
is commonly evaluated if a proxy installation requires extra
overhead like recompiling.

Moreover, depending on the usage, the memory footprint
of the proxies can be fundamental. It is not only important
the size in memory of the proxies, but also the space analysis
i.e., how many objects are needed per target. Only a proxy
instance? A proxy instance and a handler instance?

Implementation complexity. Since at constant functional-
ity, a simpler implementation is better, this criteria evaluates
the complexity of the implementation. For example, if the
proposed solution is easy to implement or if it needs com-
plex mechanisms.

Ease of debugging. It is difficult to test and debug prox-
ies because the debugger or the test framework usually send
messages to the objects that are present in the current stack.
Those messages include, for example, printing an object, ac-
cessing its instance variables, etc. When the proxy receives
any of those messages it may intercept it (depending whether
the proxy understands that message or not). Hence, debug-
ging is usually complicated in the presence of proxies.

Constraints. The toolbox may require, e.g., that the target
implements certain interface or inherits from a specific class.
In addition, it is important that the user of the proxy toolbox
can easily extent or change the purpose of the proxy adapting
it to his own needs.

Portability. A proxy implementation can depend on the
VM or the language where it is developed which can be
different in other Virtual Machines or languages.

3. Common Proxy Implementations
Even if there are different proxy implementations and solu-
tions, there is one that is the most common among dynamic
programming languages: it is based on error raising and re-
sulting error handling. We briefly describe it and show that
it fails to fulfill important requirements.

3.1 Typical Proxy Implementation
In dynamic languages, the type of the message’s receiver is
resolved at runtime. When an unknown message is sent to an
object, an error exception is thrown. The basic idea is then to
create objects that raise errors for all the possible messages
(or a subset) and customize the error handling process.

In Smalltalk, for instance, the Virtual Machine sends the
message doesNotUnderstand: to the receiver object. To avoid
infinite recursion, all objects must understand the message
doesNotUnderstand:. That is the reason why such method is
implemented in the class Object, the root of the hierarchy
chain. In Smalltalk, the default implementation throws a
MessageNotUnderstood exception. Similar mechanisms exist
in dynamic languages like Ruby, Python, Objective-C, Perl,
etc.

Since doesNotUnderstand: is a normal method, it can be
overwritten in subclasses. Hence, if we can have a minimal
object and we override the doesNotUnderstand: method to

3 2011/8/14

do something special (like forwarding messages to a target
object), then we have a possible proxy implementation. This
technique has been used for a long time [20, 22] and it is
the most common proxy implementation. Readers knowing
this topic can directly jump to Section 3.2. Most dynamic
languages provide a mechanism for handling messages that
are not understood as shown in Section 7.

Obtaining a minimal object. A minimal object is that one
which understands none or only a few methods. In some pro-
gramming languages, the root class of the hierarchy chain
(usually called Object) already contains several methods 1. In
Pharo Smalltalk, Object inherits from a superclass called Pro-
toObject which inherits from nil. ProtoObject understands a few
messages2: the minimal amount of messages that are needed
by the system. Here is a simple Proxy implementation in
Pharo.

ProtoObject subclass: #Proxy
instanceVariableNames: ’targetObject’
classVariableNames: ’’

Proxy >> doesNotUnderstand: aMessage
|result|
..."Some application specific code"
result := aMessage sendTo: targetObject.
..."Other application specific code"

^result

Handling not understood methods. This is the part of the
code that is user-defined and not part of the Proxy frame-
work itself. Common behavior include logging before and
after the method, forwarding the message to a target object,
validating some access control, etc. In case it is needed, it
is perfectly valid to issue a super send to access the default
doesNotUnderstand: behavior.

To forward a message to a target object, we need the
message name and the list of parameters sent to it. The
Smalltalk Virtual Machine invokes the doesNotUnderstand:
aMessage with a message reification as argument. Such class
specifies the method selector, the list of arguments and the
lookup class (in normal messages it is the receiver’s class
and, for super sends, it is the superclass of the class where
the method is implemented. To forward a message to another
object, the class Message provides the method sendTo: anoth-
erObject which sends such message to another object.

Notice that this solution is not limited to Smalltalk.
For example, the Smalltalk’s doesNotUnderstand: is in Ruby
method_missing, in Python __getattr__, in Perl autoload, in
Objective-C forwardInvocation:, etc. As we explain in Section
7, Objective-C provides a minimal object class called NSInvo-
cation which understands the message invokeWithTarget:aTarget
and forwards a message to another object. Example:

- (void)forwardInvocation:(NSInvocation *)invocation
{

1 Object has 338 methods in PharoCore 1.3
2 ProtoObject has 40 methods in PharoCore 1.3

[invocation invokeWithTarget:delegate];
}

In Ruby we can do:

def method_missing(name, *args, &block)
target.send(name, *args, &block)

end

In Python:

def __getattr__(self, name):
return getattr(self.realObject, name)

3.2 Evaluation
In this section we evaluate the common proxy implemen-
tation based on the criteria we provided above (see sec-
tion 2.2).

Stratification. This solution is not stratified at all:

• The method doesNotUnderstand: cannot be trapped like a
regular message. Moreover, when such message is sent
to a proxy there is no efficient way to know whether
it was because of the regular error handling procedure
or because of a proxy trap that needs to be handled. In
other words, the doesNotUnderstand: occupies the same
namespace as application-level methods [27], hence this
solution is not stratified.

• There is no separation between proxies and handlers.

Interception granularity. It cannot intercept all messages
but instead only those that are not understood. As explained,
this generates method name collisions.

Object replacement. In the common proxy implementa-
tion object replacement is usually not supported. Neverthe-
less, Smalltalk implementations do support it but suffer the
problem of "reference leaks": the target might provide its
own reference as a result of a message or a parameter. This
way the client gets a reference to the target, and hence it can
by-pass the proxy.

Transparency. This solution is not transparent. Proxies do
understand some methods (those from its superclass) gen-
erating method name collisions. For instance, if we evaluate
“Proxy new pointersTo” (pointersTo is a method implemented
in ProtoObject) it answers the references to the proxy instead
of intercepting the message and forward it to a target. The
same happens with the identity comparison or asking the
class.

Efficiency. From the CPU point of view, this solution is
fast and it has low overhead. In contrast to other technolo-
gies, there is no need to recompile the application and the
system libraries or to modify their bytecode, or to do other
changes such as in Java modifying the environment variable
CLASSPATH, the class loader. Regarding the memory us-
age, there is no optimization. Efficiency is not normally ad-
dressed in typical proxy implementations.

4 2011/8/14

Implementation complexity. This solution is easy to im-
plement: it just needs the doesNotUnderstand:, a minimal ob-
ject, and be able to forward a message to another object.

Ease of debugging. It is not provided by this solution. The
debugger sends messages to the proxy which may not be
understood, and hence, delegated to a target object. This
makes it hard to debug, inspect and print Proxy instances.

Constraints. This solution is flexible since target objects
do not need to implement any interface or method, nor to
inherit from specific classes. The user can easily extent or
change the purpose of the proxy adapting it to his own needs
by just reimplementing the doesNotUnderstand:.

Uniformity. This implementation is not uniform since
proxies cannot be used as classes, methods, etc.

Portability. This approach impose few requirements for
the language and the VM that are provided by almost all
available dynamic languages. With the examples of the pre-
vious section we demonstrate that it is really easy to imple-
ment this approach in different dynamic languages.

4. The Ghost Model
This section describes and explains the Ghost proxy model.
This model fits better for dynamic programming languages
and it is intended to be a reference model, i.e., developers
from different dynamic languages can implement it. In addi-
tion, the model must clarify which are the expected require-
ments and hooks from the host language.

4.1 Proxies
Ghost model supports proxies for regular objects as well as
for classes, methods, and any other class that requires spe-
cial management. In addition, Ghost supports proxies for
classes or methods. Furthermore, Ghost model distinguishes
between interceptors and handlers. Proxies play solely the
role of interceptors. Since we are describing the model, the
design is abstract and general. The design of an implementa-
tion may look different from this model. Figure 1 shows the
proxies hierarchy and the following is a quick overview of
the responsibilities of each class:

ObjectProxy. This is the base class for all proxies of Ghost
model and provides proxies for regular objects, i.e., objects
that do not need any special management. Its responsibility,
as well as its subclasses, is to take care about the message
interception, which is represented in Figure 1 as the method
intercept(). In Ghost model, Proxies only play the role of
interceptors. Proxies are instances of ObjectProxy or any of its
subclasses and all they do is to forward intercepted messages
to handlers. Each proxy must have an associated handler.
Different proxies can use different handlers and vice versa.

Finally, note that since proxies just intercept messages
and forward them to handlers, it is unlikely that the user
of the framework needs to customize or subclass any of the
proxy classes. What the user needs to define is what to do in
the handler.

intercept()
ObjectProxy

intercept()
interceptMessageToInstance()

classVMRequiredState
ClassProxy

intercept()
interceptSpecial()

AnotherSpecialProxy

intercept()
interceptMethodExecution()

methodVMRequiredState
MethodProxy

handleInterception(anInterception)
AbstractProxyHandler

Figure 1. Proxies hierarchy in Ghost model.

ClassProxy. There are object-oriented programming lan-
guages that represent classes as first-class objects, i.e.,
classes are not more than just instances from another class
known as the Metaclass. ClassProxy provides proxies for
class objects.

ClassProxy is needed as a special class in the model be-
cause the VM might impose specific constraints on the mem-
ory layout of object representing classes. For example, the
Smalltalk VM expects the object to have three instance vari-
ables: format, methodDict, superclass. Since we are presenting
Ghost model, that shape is generic. Different implementa-
tions may require different attributes or none. This is the
reason why in Figure 1 the possible imposed memory layout
for ClassProxy is represented by the attribute classVMRequired-
State.

Frequently, the developer needs to be able to replace an
existing class by a proxy. In that case, we need that the
object replacement not only updates the references from
other objects, but also the class pointer in the instances of
the original class. For example, suppose there is an instance
of User called bestUser. There is also a SecurityManager class
that has a class variable called userClass which in this case
points to User.

ClassProxy has to intercept the following type of mes-
sages:

• Messages that are sent directly to the class as a regu-
lar object. To continue with our example, imagine the
method controlLogin in SecurityManager that sends the mes-
sage maxLoggedUsers to its userClass instance variable. In
Figure 1 this kind of interception is represented with the
method intercept().

• Messages that are sent to an instance of the original class,
i.e., objects whose class references are pointing to the
proxy (this happens as a consequence of replacing the
class with the proxy). In our example, we can send the
message username to the bestUser instance. In Figure 1
this kind of interception is represented with the method
interceptMessageToInstance(). Notice that this kind of mes-
sages are only necessary when there is an object replace-

5 2011/8/14

ment, i.e., the instances’ class pointers of the original
class were updated to reference the proxy.

MethodProxy. In some dynamic languages, not only classes
are first-class objects but also methods as well. In addition,
similarly to the case of ClassProxy, there are two kinds of
messages that MethodProxy needs to intercept:

• When sending messages to the method as a regular ob-
ject. For example, in Smalltalk when you search for
senders of a certain method, the system has to check
in the literals of the compiled method if it is sending such
message. To do this, the system searches all the literals
of the compiled methods of all classes. This means it
will send messages (sendsSelector: in this case) to the ob-
jects that are in the method dictionary. When creating a
proxy for a method we need to intercept such messages.
In Figure 1 this kind of interception is represented with
the method intercept().

• When the compiled method is executed. Suppose we
want to create a proxy for the method register of User
class. We need to intercept the method execution, for ex-
ample, when doing User new register. This kind of inter-
ception is represented in Figure 1 with the method inter-
ceptMethodExecution(). Note that this type of message exist
only if there is object replacement, i.e., when the original
method is replaced by a proxy.

The same way that the VM imposes an object shape on
classes, it may also do it on methods. This requirement is
represented in Figure 1 with the instance variable methodVM-
RequiredState which may vary from one implementation to
the other.

AnotherSpecialProxy. This class is just to document that
the model must support different classes that need special
management. In this paper, and in our implementation, we
concentrate on classes and methods, but there can be more.

4.2 Handlers
Figure 2 shows the handler hierarchy of the Ghost model.
Once again, note that this is an abstract model and a concrete
implementation can vary significantly. Handler’s responsi-
bility is to handle the method interceptions that the proxies
trap. It is not necessary to explain in details each handler,
since we think it is self explanatory.

The information passed from a proxy to a handler can
vary depending on the implementation. The typical passed
information is:
• The name of the message received and its arguments.
• The proxy.
• The proxy’s state. It can contain anything such as the

target object, a filename or a number. This is necessary
only if such state is in the proxy and not in the handler.
Indeed, the proxy is supposed to intercept messages even
if they are sent by the handler. So, the handler cannot
send a message to the proxy to get its state. This is why

it is the responsibility of the proxy to provide this state if
any.

All that information is reified in the model as an instance
of class Interception.

4.3 Discussions
Users can adapt and extend the Ghost framework accord-
ing to their own needs via inheritance. In Figure 2 Logger-
ClassProxyHandler a user-defined class logs every intercepted
messages and forwards them to the target object.

handleInterception()
ObjectProxyHandler

handleInterception()
handleInterceptionMessageToInstance()

ClassProxyHandler

handleInterception()
handleMethodExecution()

MethodProxyHandler

handleInterception()
handleInterceptionSpecial()

AnotherSpecialProxyHandler

handleInterception()
handleInterceptionMessageToInstance()
log()
forwardToTarget()

LoggerClassProxyHandler

Framework
User

handleInterception() {
log("Method was called");
forwardToTarget(); }

message
arguments
proxy
proxyState

Interception

Figure 2. Handlers hierarchy in Ghost model.

Normally, some information is needed to accomplish the
proxy process, for example, a target object, an address in
secondary memory, a filename, an identifier, etc. This infor-
mation can be stored in the proxies, in the handlers or else-
where. However, as explained, if the state is kept in the proxy
the handler cannot ask for it because such message sent will
be intercepted. Hence, if the desire is to store the state in the
proxy, such state must be included in the Interception object
that is passed to the handler. This is represented as the in-
stance variable proxyState in Figure 2. That instance variable
can represent a target object, an address in secondary mem-
ory, a filename, an identifier, etc. Where to put this state is
user’s application dependent and a matter of design regard-
ing the relationship between proxies and handlers.

Proxies delegates the interception to a handler. How the
proxy gets the reference to the handler depends on the imple-
mentation. For example, in one case the handler can be an in-
stance variable of the proxy that is provided when the proxy
is created. In another case, all proxies can use the same han-
dler, which in this case the previous instance variable may
not be necessary and instead they reference directly to the
handler class.

Notice that in the model we are modeling the intercep-
tion of messages. However, some languages do not threat
everything like a message sent, but instead they have special
operators or syntax as part of the language. To implement
Ghost, there must be a way to intercept such special syntax
or otherwise pay the cost of not being able to intercept them.

6 2011/8/14

5. Smalltalk Support for Proxies
Before presenting the Ghost implementation, we first ex-
plain the basis of the Pharo Smalltalk reflective model and
some provided hooks. We show that Smalltalk provides all
the necessary support for proxies i.e., object replacement, in-
terception of method execution and the reification of classes
and methods as first-class objects.

5.1 Pharo Reflective Model and VM Overview
Readers familiar with the Pharo reflective model please feel
free to skip this section. The reflective model of Smalltalk is
easy and elegant. There are two important rules [4]: 1) Ev-
erything is an object; 2) Every object is instance of a class.
Since classes are objects and every object is an instance of a
class, it follows that classes must also be instances of classes.
A class whose instances are classes is called a metaclass.
Whenever you create a class, the system automatically cre-
ates a metaclass. The metaclass defines the structure and be-
havior of the class that is its instance. Figure 3 shows a sim-
plified reflective model of Smalltalk.

new
compile:
addSelector:withMethod:
removeSelector:
addSubclass:
.....

superclass
methodDict
format
(subclasses)
(name)

Class

hasLiteral:
valueWithReceiver:arguments:
decompile
getSource
....

CompiledMethod

at:
at:put:
keys
removeKey:ifAbsent:
.....

MethodDictionary

*

methodDict

methodClass

Figure 3. The basic Smalltalk reflective model.

Figure 3 shows that a class contains a name, a format,
a method dictionary, its superclass, a list of instance vari-
ables, etc. The method dictionary is a map where keys are
the methods names (called selectors in Smalltalk) and the
values are the compiled methods which are instances of Com-
piledMethod.

5.2 Hooks and Features Provided by Pharo Smalltalk
Before explaining Ghost implementation on Pharo, we
present some of the Smalltalk reflective facilities and hooks
that can be used for implementing proxies.

Class with no method dictionary. The method dictio-
nary is just an instance variable of a class, hence it can be
changed. When an object receives a message and the VM
does the method lookup, if the method dictionary of the re-
ceiver class (or of any other class in the hierarchy chain) is
nil, then the VM directly sends the message cannotInterpret:
aMessage to the receiver. But, the lookup for method cannot-
Interpret: starts in the superclass of the class whose method
dictionary was nil.

Imagine the class MyClass which has its method dictio-
nary in nil, and its superclass MyClassSuperclass. There is also

an instance of MyClass called myInstance. Figure 4 shows how
the hook works when sending the message printString to the
object myInstance.

myInstance

myInstance name

1: #printString send

methodDict := nil
MyClass

cannotInterpret: aMessage
MyClassSuperclass

Object

2: #printString lookup

3: Since the method dictionary was nil,
the VM sends #cannotInterpret to

the receiver but starting the lookup in the superclass

4: #cannotInterpret: lookup

References
instance of
message send
lookup
subclass

Figure 4. Message handling when a method dictionary is
nil.

The cannotInterpret: is sent to the receiver but starting the
method lookup from the superclass. Otherwise there will be
an infinite loop. This hook is very powerful for proxies since
it let us intercept all messages that are sent to an object.

Objects as methods. This facility allows intercepting
method executions. It relies on replacing in a method dic-
tionary a method by an object that is not an instance of Com-
piledMethod. Interception occurs if the object does understand
the message run:with:in: as we explain below. Otherwise, we
get a MessageNotUnderstood exception.

To illustrate interception consider the following code:

MyClass methodDict at: #printString put: MethodProxy new.
MyClass new printString.

When the printString message is sent the VM does the
method lookup and finds an entry for #printString in the
method dictionary. If the retrieved object is actually an in-
stance of CompiledMethod (which is the case in the normal
scenario), then the VM executes it. Otherwise, the VM sends
a special message run: aSelector with: arguments in: aReceiver to
that object, i.e., the one that replaces a method in the method
dictionary.

This technique is used when implementing MethodWrap-
pers [6]. Using run:with:in is not the only possible technique to
implement MethodWrappers in Smalltalk. In fact, the origi-
nal implementation rely on subclassing CompiledMethod.

It is important to notice that the previous explanation
means that the Pharo VM does not impose any shape to
objects acting as methods such us having certain amount
of instance variables or certain format. This is because the

7 2011/8/14

VM checks whether the object in the MethodDictionary is
a CompiledMethod or not and if it is not it sends the mes-
sage run:with:in:. The only requirement is to implement that
method. Therefore, MethodProxy does not need to fulfill any
class shape in a Ghost implementation on Pharo Smalltalk.

Object replacement. The primitive become: anotherObject
is provided by the Pharo VM and it swaps the object refer-
ences of the receiver and the argument. All variables in the
entire system that used to point to the receiver now point to
the argument, and vice versa. In addition, there is also be-
comeForward: anotherObject which updates all variables in the
entire system that used to point to the receiver now point to
the argument, i.e., it is only one way.

Change the class of an object. Smalltalk provides a prim-
itive to change the class of an object. Although it has some
limitations, e.g., the object format and the class layout of
both classes need to be the same. These primitives are Ob-
ject»primitiveChangeClassTo: or Behavior»adoptInstance: .

6. Ghost Implementation
In this section, we present the Ghost implementation. Its
most important features are: to be stratified (i.e., clear sepa-
ration between proxies and handlers), to be able to intercept
all messages, and to be uniform. For this implementation we
use the previously mentioned Pharo Smalltalk reflective fa-
cilities: classes with no method dictionary, objects as meth-
ods, object replacement and the ability to change the class of
an object.

Regarding the discussions of Section 4.3, in this imple-
mentation we store the needed information, for example, the
target object, an identifier, a filename, etc, in the proxies.
Another possible implementation is to store the information
in the handler for example. In addition, in the following im-
plementation each proxy instance uses a particular handler
instance, hence the handler is represented as an instance vari-
able of the proxy.

To explain the implementation we use a SimpleForwarder-
Handler which just forwards the interceptions to a target ob-
ject. Therefore, the state stored in the proxy is a target object.

6.1 Kernel
Figure 5 shows the basic design of Ghost.

To explain the implementation we start with the following
simple test:

testSimpleForwarder
| proxy |
proxy := Proxy proxyFor: (Point x: 3 y: 4) handler: SimpleFor-

warderHandler new.
self assert: proxy x equals: 3.
self assert: proxy y equals: 4.

The class side method proxyFor:handler: creates a new in-
stance of Proxy, sets the handler, and finally changes the class
of the just created Proxy instance to ProxyTrap. The user of
the toolbox can specify which handler to use just by send-

cannotInterpret:
proxyFor:

handler
target

Proxy

initialize
nilMethodDict

ProxyTrap

Object

handleInterception: anInterception
ProxyHandler

handleInterception: anInterception
SimpleForwarderHandler

message
proxy
proxyState

Interception

Figure 5. Ghost implementation’s basic design.

ing it as a parameter of the proxy creational message proxy-
For:handler:.

Proxy class >> proxyFor: anObject handler: aHandler
| aProxy |
aProxy := self new

initializeWith: anObject
handler: aHandler.

ProxyTrap adoptInstance: aProxy.
^ aProxy.

The class side method initialize is called right after loading
ProxyTrap into the system and it sets the method dictionary of
the class to nil. Notice that the system does not deal correctly
with classes whose method dictionary is nil. Hence, we need
to overwrite the method Behavior » methodDict to:

Behavior >> methodDict
methodDict == nil ifTrue: [^ MethodDictionary new].
^ methodDict

Since the system access the method dictionary with
methodDict it looks like if the class has an empty method
dictionary, but instead it has a nil. Since the VM access di-
rectly to the slow where the method dictionary is, i.e., the
VM does not use methodDict, it works for both things: the
interception and the system.

With the line ProxyTrap adoptInstance: aProxy we change
the class of aProxy to ProxyTrap, whose method dictionary
is nil. This means that for any message sent to aProxy, the
VM will finally send the message cannotInterpret: aMessage.
Remember that such message is sent to the receiver (in this
case aProxy) but starting the method lookup in the super
class, which in this case is Proxy. Hence, Proxy implements
the method cannotInterpret:

Proxy >> cannotInterpret: aMessage
| interception |

interception := Interception for: aMessage proxyState: tar-
get proxy: self.

^ handler handleInterception: interception.

8 2011/8/14

An Interception instance is created and passed to the han-
dler. In this example, the instance variable proxyState is the
target object.

Handler classes are user-defined and in this example we
use a simple forwarder handler, i.e., it logs and forwards the
received message to a target object. Users of the toolbox can
create their own handlers that achieve their requirements.

SimpleForwarderHandler >> handleInterception: anInterception
| answer |

self log: ’Message ’, anInterception message selector, ’ inter-
cepted’.

answer := anInterception message sendTo: anIntercep-
tion proxyState.

self log: ’The message was forwarded to the target object’.
^ answer

For the moment, we can say that the class Proxy can only
be used for regular objects (in the example we create a proxy
for Point instance). We see in the following sections how
Ghost handles objects that do require special management
like classes or methods.

6.2 Proxies for Methods
As we have already explained in Section 4, for methods there
are two kind of messages that we need to intercept:

• When the compiled method is executed.
• When sending messages to the compiled method object.

To clarify, imagine the following test:

testSimpleProxyForMethods
| aProxy kurt method |
kurt := User named: ’Kurt’.
method := User compiledMethodAt: #username.
aProxy := Proxy

createProxyAndReplace: method
handler: SimpleForwarderHandler new.

self assert: aProxy getSource equals: ’username ^ name’.
self assert: kurt username equals: ’Kurt’.

What the test does is to create an instance of a User and a
proxy for method username. Then, we replace the original
method username with the created proxy. Finally, we test
both type of messages: when sending a message to the proxy
(in this case aProxy getSource) and when sending message
username that leads to the execution of the proxified method.

With Ghost implementation, both kind of messages are
solved out of the box: the first case, i.e.,aProxy getSource
has nothing special and it behaves exactly the same way
we have explained so far. The second one, i.e.,kurt username,
also works without any special management by using the
explained hook of the method run:with:in:. However, this sec-
ond type of message is only captured if the original method
was replaced by the proxy. This is why in this test we use
the method createProxyAndReplace:handler: instead of proxy-
For:handler:, because we want to not only to create a proxy

for the method but instead replace it with the proxy. The fol-
lowing is the implementation of such method:

Proxy class >> createProxyAndReplace: aClass handler: aHandler
| aProxy newProxyRef newObjectRef|
aProxy := self new

initializeWith: anObject
handler: aHandler.

aProxy become: anObject.
"After the become is done, variable aProxy points to anObject
and variable anObject points to aProxy. We create two new
variables just to clarify the code"

newProxyRef := anObject.
newObjectRef := aProxy.
newProxyRef target: newObjectRef.
ProxyTrap adoptInstance: newProxyRef.
^ newProxyRef.

Notice that createProxyAndReplace:handler: is useful for
method proxies, as well as for regular objects. In the pre-
vious section where we used the method proxyOn: we could
perfectly have used createProxyAndReplace:handler: instead.

Coming back to the test of kurt username, when the VM
does the method lookup for the message username it notices
that in the method dictionary is not a CompiledMethod instance
but instead an instance from another class. Hence, it sends
the message run:with:in to such object. Since such object is a
proxy in this case, the message run:with:in: will be intercepted
and forwarded just like any other message. In the base Pharo
image, CompiledMethod does not implement such method, so
Ghost implements it as a method extension in the following
way:

CompiledMethod >> run: aSelector with: anArray in: aReceiver
^ self valueWithReceiver: aReceiver arguments: anArray

That method just executes the method (the receiver).
However, such change does not need to be necessary im-
plemented in CompiledMethod. As we will see later, Ghost
supports a way to define specific messages so that they are
treated and answered by the handler instead of being man-
aged as a normal interception. So we can tell the handler
to perform something in particular if the message run:with:in:
is intercepted (this information is available in the Message
instance referenced by the Interception object). In this case
we can directly use the method valueWithReceiver:arguments:
to execute the CompiledMethod.

The previous explanation demonstrates how Ghost can
create not only proxies for methods, but also how to replace
them by proxies. In contrast to what we defined in the model,
the Pharo Smalltalk VM does not impose any shape to meth-
ods. Therefore, we can use the same Proxy class that we use
for regular objects, i.e., the class MethodProxy defined in the
Ghost model does not exist in this concrete implementation
since we can directly use Proxy.

9 2011/8/14

6.3 Proxies for Classes
Implementing proxies for classes and also to be able to
replace and use a proxy as a class, has some important
constraints:

• Class proxies must fulfill the expected object shape
that the VM imposes in classes. In the case of Pharo
Smalltalk, the minimum amount of instance variables
that a class must have are: superclass, methodDict and for-
mat.

• Instances hold a reference to their class and the VM uses
this reference for the method lookup.

• A class is involved with two kinds of messages that need
to be intercepted as introduced in Section 4:

Messages that are sent directly to the class.
Messages that are sent to an instance of the class. Such
messages are intercepted only if the original class was
replaced by the proxy.

To explain class proxies, consider the following test:

testSimpleProxyForClasses
| aProxy kurt |
kurt := User named: ’Kurt’.
aProxy := ClassProxy

createProxyAndReplace: User
handler: SimpleForwarderHandler new.

self assert: User name equals: #User.
self assert: kurt username equals: ’Kurt’.

The test creates an instance of a user, and then with the
message createProxyAndReplace:handler: we create a proxy for
the User class and we replace it by the created proxy. Finally,
we test that we can intercept both messages: those which are
sent to the proxy (in this case User name) and those which
are sent to instances of the original class (kurt username in
this case).

The first message, User name, has nothing special and it
is handled the same way as any other message. The second
one is more complicated and it requires certain explanation.

Figure 6 shows the design of ClassProxy. First, notice that
we do not use the class Proxy but instead ClassProxy. This is
because proxies for classes need to fulfill the expected object
shape that the VM imposes in classes, i.e., the instance vari-
ables superclass, methodDict and format. Second, in the model
we showed that ClassProxy was a subclass of ObjectProxy but
in this case it is not. The reason is that the VM does not
only imposes the mentioned instance variables but also the
order: superclass at position 1, methodDict at 2 and format at
3. If ClassProxy is a subclass of ObjectProxy it inherits the two
instance variables target and handler and since they are de-
fined in the superclass they are “first” in the array of instance
variables of the object. So, superclass will be at position 3,
methodDict at 4 and format at 5. Therefore, we are not respect-
ing the expected shape.

The previous issue is not really a problem because Object-
Proxy implements only two methods and they are even dif-

ferent in ClassProxy. Hence, even if the limitation is real, we
are not duplicating code because of that.

Object

cannotInterpret:
createProxyAndReplace:

superclass
methodDict
format

ClassProxy

initialize
ClassProxyTrap

Figure 6. Class proxies in Ghost stratified implementation.

The method createProxyAndReplace:handler: is similar to
the one used in Proxy:

ClassProxy class >> createProxyAndReplace: aClass handler: aHandler
| aProxy newProxyRef newClassRef|
aProxy := self new

initializeWith: aHandler
methodDict: nil
superclass: ClassProxy
format: aClass format.

aProxy become: aClass.
"After the become is done, aProxy now points to aClass
and aClass points to aProxy. We create two new variables
just to clarify the code"

newProxyRef := aClass.
newClassRef := aProxy.
newProxyRef target: newClassRef.
ClassProxyTrap adoptInstance: newProxyRef.
^ newProxyRef.

The difference is that in addition to setting the handler
and the target, we also set the method dictionary, the su-
perclass and the format. This is because an instance of
ClassProxy must work as a class. Thus, we set its method
dictionary in nil, ClassProxy as the superclass and finally the
format (this is important so that the adoptInstance: does not
fail).

Coming back to the example, when we evaluate kurt user-
name this is what happens: the class reference of kurt is point-
ing to the created ClassProxy instance (as a result of the be-
come:), and this proxy object that acts as a class, has the
method dictionary instance variable in nil. Hence, the VM
sends the message cannotInterpret: to the receiver (kurt in this
case) but starting the method lookup in the superclass which
is ClassProxy (as set in method ClassProxy class » createProx-
yAndReplace:handler: defined above). The definition of the
cannotInterpret: of class ClassProxy is the following.

ClassProxy >> cannotInterpret: aMessage
| interception |
"The order of this expression is important
because a proxy intercepts all messages including =="
(ClassProxyTrap == aMessage lookupClass)

10 2011/8/14

ifTrue: [interception := Interception for: aMessage
proxyState: target proxy: self.

^ handler handleInterception: interception]
ifFalse: [interception := Interception for: aMessage

proxyState: target proxy: aMessage lookupClass.
^ handler handleInterception: interception toInstance: self]

It is important to notice the difference in this method
regarding the kind of message it is intercepting. On the one
hand, when we evaluate User name and the cannotInterpret: is
called, the receiver, i.e., what self is pointing to, is the proxy
itself. On the other hand, when we evaluate kurt userame
and cannotInterpret: is called, self points to kurt and not to the
proxy.

The method Message lookupClass answers the class where
lookup will start. If it is ClassProxyTrap it means the receiver
was proxy, and not an instance of the original class.

A problem is that the CompiledMethod of cannotInter-
pret: cannot be correctly executed with a receiver like kurt.
In fact, it can only be correctly executed with proxy in-
stances. The reason is that the method ClassProxy » cannot-
Interpret: access the instance variable handler. Hence the first
problem is that the class User does not define such instance
variable. The second problem is that CompiledMethod do
not store instance variable names but instead its offsets. So
when the CompiledMethod of cannotInterpret: is executed the
instructions (bytecodes) to access the instance variable han-
dler is just something like “access instance variable at posi-
tion 5”, which is correct in the class where it was defined
(ClassProxy). When evaluating the method with receivers of
other classes e.g.,User then the VM can crash because it is
accessing outside the object or just answer whatever is at
that place. For example, if a class defines only two instance
variables, the bytecode “accessing instance variable at po-
sition 5” means that the VM will access a memory address
outside the object. Whether the VM crashes or not depends
on the concrete VM implementation. In the case of Pharo
Smalltalk, the VM crash in such scenario so we cannot use
this solution.

Instead of directly accessing the instance variable handler
one may think why not to send a message handler. This is
not possible because since the proxy intercepts all messages,
such message sent will finally call cannotInterpret: generating
an infinite loop.

To that limitation, Ghost provides the following alter-
native. Instead of doing handler handleInterception: interception
toInstance: self we send a special message to the proxy, which
is accessible through aMessage lookupClass. Hence, we can do
aMessage lookupClass handleInterception: interception toInstance:
self. In the item Ease of debugging of the next section we
explain that we can define a list of specific messages in the
handler so that it does not manage such messages intercep-
tions as it is done with the regular ones, but instead those
messages are processed and answered by the handler itself.
The message handleInterception:toInstance: is one of those mes-
sages and it is managed by the handler. At that point the

handler has everything he needs e.g.,Interception object and
receiver, so it can perform its task.

Coming back to the implementation, the last missing ex-
planation is why we need ClassProxyTrap instead of reusing
ProxyTrap. The reason is that the message adoptInstance: re-
quires certain conditions, like having the same object format.
Since ClassProxy and Proxy have different amount of instance
variables and hence format, then we cannot reuse the same
ProxyTrap.

ProxyTrap class >> initialize
superclass := Proxy.
methodDict := nil.
format := Proxy format.

ClassProxyTrap class >> initialize
superclass := ClassProxy.
methodDict := nil.
format := ClassProxy format.

The Ghost implementation uses ProxyClass and ClassProx-
yTrap not only because it is cleaner from the design point of
view but also because of the memory footprint. Technically,
we can use ProxyClass and ClassProxyTrap also for regular ob-
jects and methods. But that implies that for every target to
proxify the size of the proxy can be unnecessary bigger in
memory footprint, because of the additional instance vari-
ables needed by ClassProxy.

To conclude, with this implementation we can success-
fully create proxies for classes, i.e., to be able to intercept
the two mentioned kind of messages and replace classes by
proxies.

6.4 Criteria Evaluation
Stratification. This solution is completely stratified. On
the one hand, there is a clear separation between proxies
and handlers. On the other hand, interception facilities are
separated from application functionality. Indeed, the appli-
cation can even send the cannotInterpret: message to the proxy.
Since, proxies do not understand any message, cannotInter-
pert: would be intercepted like any other message. Thus, the
proxy API does not pollute the application’s namespace.

Object replacement. This is provided by Ghost thanks to
the Smalltalk become: primitive.

Interception granularity. It intercepts all messages.

Transparency. The Pharo compiler associates special byte-
codes for the messages class and == (identity), i.e., even if
there is an implementation of those methods, they are ac-
tually never executed and, therefore, they cannot be inter-
cepted. Our solution is to modify the compiler so that it does
not associate a special bytecode for both methods. Such
modification is the following:

(ParseNode classVarNamed: ’StdSelectors’) removeKey: #class.
(ParseNode classVarNamed: ’StdSelectors’) removeKey: #==.
Compiler recompileAll.

11 2011/8/14

We did a benchmark to estimate the overhead impact of
such change. We run all the tests (8003 unit tests) present in
a PharoCore 1.3 - 13204 image, twice: once with the class
and == optimizations and once without them. The overhead
of removing those optimizations was only about 4%, which
means that it is only slightly perceptible in general system
interactions.

In the discussion of Section 4 we talk about the possibility
of some languages to have special syntax or operators in
addition to messages sent. These special selectors class and
== can be considered like that. However, Smalltalk allows us
to convert them into messages so we have an easy way to
deal with them. This way Ghost solution is fully transparent
and both messages are intercepted and handled as any other
message.

Efficiency. From the CPU point of view, this solution is
fast and it has low overhead.

This solution provides an efficient memory usage with the
following optimizations:

• Proxy and ClassProxy are “Compact Classes”. This means
that in a 32 bits system, their instances’ object header
are only 4 bytes long instead of 8 bytes for instances
of regular classes. For instances whose “body” part is
more than 255 bytes and whose class is compact, their
header will be 8 bytes instead of 12. The first word in the
header of regular objects contains flags for the Gargbage
Collector, the header type, format, hash, etc. The second
word is used to store a reference to the class. In compact
classes, the reference to the class is encoded in 5 free bits
in the first word of the header. These 5 bits represent the
index of a class in the compact classes array set by the
image3 and accessible to the VM. With these 5 bits, there
are 32 possible compact classes. This means that, from
the language side, the developer can determinate up to
32 classes as compact. Their instances’ object header are
only 4 bytes long as we said. Hence, declaring the proxy
classes as compact makes proxies to have smaller header
and then smaller memory footprint.

• Proxies only keep the minimal state they need. For exam-
ple, as we have already explained, we can use ClassProxy
for every type of object. However, the size of the prox-
ies would be unnecessary larger to store the additional
needed instance variables of ClassProxy.

• In proxy creation methods presented so far (proxyFor:handler:
and createProxyAndReplace:handler:) the last parameter is
an instance of the handler. This is because in our exam-
ples, each proxy holds a reference to handler. However,
this is only necessary when the user needs one handler in-
stance per target object, which is not often the case. The
handler is often stateless and can be shared and refer-
enced through a class variable or a global one. Hence, we
can avoid the memory cost of a handler instance variable
in the proxy. Instead, one possible solution is to reference

3 see methods SmalltalkImage»compactClassesArray and SmalltalkIm-
age»recreateSpecialObjectsArray

in the Proxy»cannotInterpret: method a handler class which
has a class side method handleInterception:. For example:

Proxy >> cannotInterpret: aMessage
| interception |
interception := Interception for: aMessage proxyState: tar-

get proxy: self.
^ SimpleForwarderHandler handleInterception: interception.

An alternative is to use a handler class with a singleton
or a default instance. For example:

Proxy >> cannotInterpret: aMessage
| interception |
interception := Interception for: aMessage proxyState: tar-

get proxy: self.
^ SimpleForwarderHandler uniqueInstance handleIntercep-

tion: interception.

In both cases we save the memory corresponding to the
instance variable to reference the handler plus the han-
dler instance itself. If we consider that the handler has no
instance variable, then it is 4 bytes for the instance vari-
able in the proxy and 8 bytes for the handler instance.
That gives a total of 12 bytes saved per proxy in a 32 bits
system.

Implementation complexity. This solution is easy to im-
plement: an approximation of 5 classes, with an average of
3.4 methods per class, and each method is of an average of 5
lines of code.

Ease of debugging. Ghost implementation supports spe-
cial messages that the handler must answer itself instead of
managing it as a regular interception. The handler can keep
a dictionary that maps selector of messages intercepted by
the proxy to selectors of messages to be performed by the
handler itself. This user-defined list of selectors can be used
for debugging purposes, i.e., those messages that are sent by
the debugger to the proxy are answered by the handler and
they are not managed as a regular interception. This signifi-
cantly ease the debugging of proxies. For example, the han-
dler’s dictionary of special messages for debugging can be
defined as following:

SimpleForwarderHandler >> debuggingMessagesToHandle
| dict |
dict := Dictionary new.
dict at: #basicInspect put:#handleBasicInspect:.
dict at: #inspect put:#handleInspect:.
dict at: #inspectorClass put:#handleInspectorClass:.
dict at: #printStringLimitedTo: put: #handlePrintStringLimitedTo:.
dict at: #printString put: #handlePrintString:.
^ dict

The keys of the dictionary are selectors of messages re-
ceived by the proxy and the values are selectors of messages
that the handler must send to itself. All the selectors of mes-
sages to be sent to the handler (i.e., the dictionary values)

12 2011/8/14

have a parameter which is an instance of Interception, which
contains the receiver, the message, the proxy and the target.
Therefore, all those methods have access to all the informa-
tion they need.

Moreover, these special messages are “pluggable” i.e.,
they can be easily enabled e.g., for debugging, and disabled
for production.

Constraints. The solution is flexible since target objects
can inherit from any class and they are free to implement or
not implement all the methods they want. There is not any
kind of restriction imposed by Ghost. In addition, the user
can easily extent or change the purpose of the proxy adapting
it to his own needs: he just needs to subclass a handler and
implement the necessary methods like handleInterception:.

Uniformity. This implementation is uniform since proxies
can be used for regular objects, as classes and as methods.
Moreover they all provide the same API and can be used
polymorphically. Nevertheless, there is still non-uniformity
regarding some other special classes and objects. Most of
them are those that are present in what is called the spe-
cial objects array (check method recreateSpecialObjectsArray)
in Pharo Smalltalk. Such array contain the list of special ob-
jects that are known by the VM. Examples are the objects
nil, true, false, etc. It is not possible to do a correct object re-
placement of those objects by proxies. The same happens
with immediate objects, i.e., objects that do not have object
header and are directly encoded in the memory address, like
SmallInteger.

The special object array contains not only regular objects
but also classes. Those classes are known and used by the
VM so it may impose certain shape, format or responsibili-
ties in their instances. For example, one of those classes in
Process. Once again, it is not possible to correctly replace
a Process instance by a proxy. The same limitation exists if
we want to create a proxy not for instances of those special
classes but for those classes.

The mentioned limitations occur only when object re-
placement is desired. Otherwise, there is no problem and
proxies can be created for those objects. In addition, we be-
lieve that creating proxies for methods and classes is useful
in several scenarios as we see in next section. The rest of the
mentioned limitations is not a common need. Hence, those
restrictions are not a real problem for Ghost users.

Portability. This is the bigger disadvantage of this ap-
proach. It requires the hook of setting nil to a method dic-
tionary and the VM sending the message cannotInterpret:.
In addition, it also requires object replacement (become:
primitive) and to be able to change the class of an object
(adoptInstance: primitive). However, without these reflective
facilities we cannot easily implement all the required fea-
tures of a good proxy library. In the best case, we can get
everything but with substantial development effort such as
modifying the VM or compiler, or even creating them from
scratch. Smalltalk provides all those features by default.

7. Related Work
7.1 Proxies in dynamic languages
Objective-C provides an out-of-the-box Proxy implementa-
tion called NSProxy [21]. This solution consists of an ab-
stract class NSProxy that implements the minimum number
of methods to be a root class. Indeed, this class is not a sub-
class of NSObject (the Objective-C root class in the hierar-
chy chain) but a separate root class (like subclassing from
nil in Smalltalk). The intention is to reduce method conflicts
between the proxified object and the proxy. Subclasses of
NSProxy can be used to implement distributed messaging, fu-
ture objects or other proxies usage. Typically, a message to
a proxy is forwarded to a profixied object which can be an
instance variable in a NSProxy subclass.

Since Objective-C is a dynamic language, it needs to pro-
vide a mechanism like the Smalltalk doesNotUnderstand: for
the cases where an object receives a message that cannot un-
derstand. When a message is not understood, the Objective-
C runtime will send methodSignatureForSelector: to see what
kind of argument and return types are present. If a method
signature is returned, the runtime creates a NSInvocation ob-
ject describing the message being sent and then sends for-
wardInvocation: to the object. If no method signature is found,
the runtime sends doesNotRecognizeSelector:.

NSProxy subclasses must override the forwardInvocation:
and methodSignatureForSelector: methods to handle messages
that they do not implement themselves. A subclass’s imple-
mentation of forwardInvocation: should do whatever is needed
to process the invocation such as forwarding the invocation
over the network or loading the real object and passing the
invocation. methodSignatureForSelector: is required to provide
argument type information for a given message. A subclass’
implementation should be able to determine the argument
types (note that ObjectiveC is not so dynamic from this re-
gard) for the messages it needs to forward and should con-
struct a NSMethodSignature object accordingly.

To sum up, the developer needs to subclass NSProxy and
implement the forwardInvocation: to handle messages that are
not understood by itself.

One of the drawbacks of this solution is that the developer
does not have control over the methods that are implemented
in NSProxy. For example, such class implements the methods
isEqual:, hash, class, etc. This is a problem because those
messages will be understood by the proxy instead of being
forwarded to the wrapped object producing different paths in
the code execution. This solution is similar to the common
solution in Smalltalk with doesNotUnderstand:. A possible,
yet tedious, solution may be to overwrite such methods in
the NSProxy subclass so that they delegate to the wrapped
object.

In Ruby, there is a proxy implementation which is called
Delegator. This is just a class included with Ruby stan-
dard library but it can be easily modified or implemented
from scratch. Similar to Objective-C and Smalltalk (in-
deed, similar to most dynamic languages), Ruby provides
a mechanism to handle the situation when an object receives

13 2011/8/14

a message that cannot understand. This method is called
method_missing(aSelector, *args). Moreover, since Ruby 1.9
Object is not the root of the hierarchy chain and Object is
a subclass of a new minimal class called BasicObject which
understands a few methods and is similar to ProtoObject in
Smalltalk.

The idea of Ruby proxies are similar to the Smalltalk
solution using doesNotUnderstand: and to NSProxy: have a
minimal object (subclass from BasicObject) and implement
method_missing(aSelector, *args) to intercept messages. In
Python, an analogous implementation can be done by over-
writing the __getattr__ method in a proxy. Such method is
called when an attribute lookup has not found the attribute
in the usual places.

Arnaud et al. [1] took a much deeper approach: internally,
an object X does not refer directly to another object Y, but
instead X has a reference to a special Handler object that refers
to Y. The handler object is fully invisible for the developer.
The idea is that different references to an object can use
different handlers. This can be used for several things, like
defining read-only references to an object. But the solution
is generic so for example a handler could be used as a proxy.
For example, a simple handler could be implemented so that
it does something in particular with the message interception
e.g., logging, and then forward it to the target object.

7.2 Proxies in static languages
Java, being a statically typed language, supports quite lim-
ited proxies called Dynamic Proxy Classes [14]. It relies on
the Proxy class from the java.lang.reflect package. “Proxy
provides static methods for creating dynamic proxy classes
and instances, and it is also the superclass of all dynamic
proxy classes created by those methods.”[14]. The creation
of a dynamic proxy class can only be done by providing a list
of java interfaces that should be implemented by the gener-
ated class. All messages corresponding to declarations in the
provided interfaces will be intercepted by a proxy instance
of the generated class and forwarded to a handler object.
“Each proxy instance has an associated invocation handler
object, which implements the interface InvocationHandler. A
method invocation on a proxy instance through one of its
proxy interfaces will be dispatched to the invoke method
of the instance’s invocation handler, passing the proxy in-
stance, a java.lang.reflect.Method object identifying the method
that was invoked, and an array of type Object containing the
arguments. The invocation handler processes the encoded
method invocation as appropriate and the result that it re-
turns will be returned as the result of the method invocation
on the proxy instance. ” [14].

Java proxies have the following limitations:

• You cannot create a proxy for instances of a class which
methods aren’t all declared in interfaces. This means
that, if you want to create a proxy for a domain class,
you are forced to create an interface for it. Eugster [11]
proposed a solution which provides proxies for classes.
There is also a third-party framework based on bytecode

manipulation called CGLib [9] which provides proxies
for classes.

• Only the methods defined in the interface will be inter-
cepted which is a big limitation.

• Java interfaces do not support private methods. Hence
since Java proxies require interfaces, private methods
cannot be intercepted either. Depending of the proxy
usage this can be a problem.

• Proxies are subclass from Object, forcing them to under-
stand several messages. When the messages hashCode,
equals or toString (declared in Object) are sent to a proxy
instance they are encoded and dispatched to the invoca-
tion handler’s invoke method, i.e., they are intercepted.
However, the same does not happen with the rest of the
public methods, e.g.,getClass. So a proxy answers its own
class instead of the target’s one. Therefore, the proxy is
not transparent and it is not fully stratified.

Microsoft’s .NET platform [26] proposes a closely related
concept of Java dynamic proxies with nearly the same limi-
tations as in Java. There are others third-party libraries like
Castle DynamicProxy [8] or LinFu [18]. DynamicProxy dif-
fers from the proxy implementation built into .NET which
requires the proxified class to extend MarshalByRefObject. Ex-
tending MashalByRefObject to proxy an object can be too in-
trusive because it does not allow the class to extend another
class and it does not allow transparent proxying of classes. In
LinFu, every generated proxy, dynamically overrides all of
its parent’s virtual methods. Each one of its respective over-
ridden method implementations delegates each method call
to the attached interceptor object. However, non of them can
intercept non-virtual methods.

7.3 Comparison
Statically typed languages, such as Java or .NET, support
quite limited proxies [2]. In Java the problem is that types are
bound to classes and in addition the lookup is done statically
i.e., at compile-time. There is also the replacement issue and
transparency. Another problem in Java is that one cannot
build a proxy with fields storing any specific data. Therefore,
one has to put everything in the handler, hence no handler
sharing is possible ending in a bigger memory footprint.

Proxies are far more powerful, flexible, transparent and
easy to implement in dynamic languages than static ones.

In dynamic languages, just two features are enough to
implement a naive Proxy solution: 1) a mechanism to handle
messages that are not understood by the receiver object and
2) a minimal object that understands a few or no messages
so that the rest are managed by the mentioned mechanism.

Objective-C NSProxy, Ruby Decorator, etc, all work that
way. Nevertheless, non of them solves all the problems men-
tioned in this paper:

Memory footprint. None of the solutions take special care
of the memory usage of proxies. This is a real limitation
when proxies are being used, e.g., to save memory.

14 2011/8/14

Object replacement. Most proxy solutions can create a
proxy for a particular object X. The user can then use
that proxy as the original object. The problem is that
there may be other objects in the system referencing to X.
Without object replacement, those references will still be
pointing to X instead of pointing to the proxy. Depending
on the proxies usage, this can be a drawback.

Proxies for classes and methods All the investigated so-
lutions create proxies for specific objects but none of
them are able to create proxies for class objects or com-
piled methods.

8. Conclusion
In this paper, we described the Proxy pattern, its differ-
ent usages and common problems while trying to imple-
ment them. We introduced Ghost, a generic, light-weight
and stratified Proxy model and its implementation on top of
Pharo Smalltalk.

Our solution provides uniform proxies not only for reg-
ular instances, but also for classes and methods. In addi-
tion, Ghost proxies can have a really small memory foot-
print. Proxies are powerful, easy to use and extend and its
overhead is low.

Ghost was easy to implement on Pharo Smalltalk because
the language and the VM provide unique reflective facilities
and hooks. Nevertheless, we believe that such specific fea-
tures, provided by Smalltalk and its VM, can also be ported
to other dynamic programming language.

Acknowledgements
This work is supported by Ministry of Higher Education and
Research, Nord-Pas de Calais Regional Council and FEDER
through the CPER 2007-2013.

References
[1] J.-B. Arnaud, M. Denker, S. Ducasse, D. Pollet, A. Bergel,

and M. Suen. Read-only execution for dynamic languages. In
TOOLS-Europe’10, June 2010.

[2] T. Barrett. Dynamic proxies in Java and .NET. Dr. Dobb’s
Journal of Software Tools, 28(7):18, 20, 22, 24, 26, July 2003.

[3] J. K. Bennett. The design and implementation of distributed
Smalltalk. In Proceedings OOPSLA ’87, volume 22, pp 318–
330, Dec. 1987.

[4] A. P. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou,
and M. Denker. Pharo by Example. Square Bracket Asso-
ciates, 2009.

[5] G. Bracha and D. Ungar. Mirrors: design principles for meta-
level facilities of object-oriented programming languages. In
OOPSLA’04, pp 331–344, 2004. ACM Press.

[6] J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers
to the rescue. In ECOOP’98, LNCS 1445, pp 396–417.
Springer-Verlag, 1998.

[7] P. Butterworth, A. Otis, and J. Stein. The GemStone object
database management system. Commun. ACM, 34(10):64–77,
1991.

[8] Castle dynamicproxy library. http://www.castleproject.org/
dynamicproxy/index.html.

[9] cglib code generation library. http://cglib.sourceforge.net.
[10] S. Ducasse. Evaluating message passing control techniques in

Smalltalk. Journal of Object-Oriented Programming (JOOP),
12(6):39–44, June 1999.

[11] P. Eugster. Uniform proxies for java. In OOPSLA’06, pp 139–
152, 2006.

[12] E. Gamma, R. Helm, J. Vlissides, and R. E. Johnson. Design
patterns: Abstraction and reuse of object-oriented design. In
Proceedings ECOOP ’93, LNCS 707, pp 406–431, 1993.

[13] Y. Hassoun, R. Johnson, and S. Counsell. Applications of dy-
namic proxies in distributed environments. Software Practice
and Experience, 35(1):75–99, Jan. 2005.

[14] Oracle. java dynamic proxies. the java platform 1.5 api specifi-
cation. hhttp://download.oracle.com/javase/1.5.0/docs/api/java/lang/
reflect/Proxy.html.

[15] G. Kiczales, J. des Rivières, and D. G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[16] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-Oriented Programming.
In Proceedings ECOOP ’97, LNCS 1241, pp 220–242, 1997.

[17] R. Koster and T. Kramp. Loadable smart proxies and native-
code shipping for CORBA. In USM, LNCS 1890 , pp 202–
213, 2000.

[18] Linfu proxies framework. http://www.codeproject.com/KB/cs/
LinFuPart1.aspx.

[19] P. Lipton. Java proxies for database objects. http://www.drdobbs.
com/windows/184410934, 1999.

[20] P. L. McCullough. Transparent forwarding: First steps. In
Proceedings OOPSLA ’87, volume 22, pp 331–341, Dec.
1987.

[21] Apple. developer library documentation. http:
//developer.apple.com/library/ios/#documentation/cocoa/reference/
foundation/Classes/NSProxy_Class/Reference/Reference.html.

[22] G. A. Pascoe. Encapsulators: A new software paradigm in
Smalltalk-80. In Proceedings OOPSLA ’86 , volume 21, pp
341–346, Nov. 1986.

[23] P. Pratikakis, J. Spacco, and M. Hicks. Transparent proxies
for java futures. In OOPSLA ’04, pp 206–223, 2004.

[24] N. Santos, P. Marques, and L. Silva. A framework for smart
proxies and interceptors in RMI, 2002.

[25] M. Shapiro. Structure and encapsulation in distributed sys-
tems: The proxy principle. In ICDCS’86, pp 198–205, 1986.
IEEE Computer Society.

[26] T. Thai and H. Q. Lam. .NET framework essentials / T. thai,
H.Q. lam., 2001.

[27] T. Van Cutsem and M. S. Miller. Proxies: design principles for
robust object-oriented intercession apis. Dynamic Language
Symposium, 45:59–72, 2010.

[28] N. Wang, K. Parameswaran, D. Schmidt, and O. Othman.
The design and performance of Meta-Programming mecha-
nisms for object request broker middleware. In COOTS’01
(USENIX), pp 103–118, 2001.

[29] I. Welch and R. Stroud. Dalang - A reflective extension for
java, OOPSLA99 Workshop on Reflection, 1999.

15 2011/8/14

IWST 2011 Selected papers

90

Challenges to support automated random
testing for dynamically typed languages

Stéphane Ducasse
RMoD – INRIA Lille Nord Europe,

France
http://stephane.ducasse.free.fr/

Manuel Oriol
University of York, UK
manuel@cs.york.ac.uk

Alexandre Bergel
Pleiad Lab, Department of Computer
Science (DCC), University of Chile,

Chile
http://bergel.eu

Abstract
Automated random testing is a proven way to identify bugs
and precondition violations, and this even in well tested li-
braries. In the context of statically typed languages, current
automated random testing tools heavily take advantage of
static method declaration (argument types, thrown excep-
tions) to constrain input domains while testing and to iden-
tify errors. For such reason, automated random testing has
not been investigated in the context of dynamically typed
languages. In this paper we present the key challenges that
have to be addressed to support automated testing in dy-
namic languages.

1. Introduction
Random testing is a form of automatic testing that randomly
generates data input and test cases. Random testing shines
in its effectiveness to identify software faults against manual
testing [CPO+11]. Random tests are appealing because they
are relatively easy and cheap to obtain.

Autotest [CPL+08, COMP08] and Yeti [OT10]1 have
proven that automated random testing is an effective way
to identify bugs and generate test cases which reproduce
them. Autotest typically finds more bugs than any kind of
manual testing in very small amounts of time [COMP08].
While all types of testing find different kinds of bugs, there is
an overlap between bugs found by random testing and bugs
found by other techniques.

Dynamically typed languages, including Pharo, [BDN+09]
should be able to take advantages of the benefits of au-

1 http://www.yetitest.org

[Preprint of International Workshop on Smalltalk Technologies 2011.]

tomated random testing. Unfortunately, current automated
random testing tools heavily rely on of static type annota-
tion: method signatures, including argument types, return
types and thrown exceptions, constrain input domains used
by a random test. In addition, static types qualify the soft-
ware faults found by random tests (e.g., whether a fault is
effectively a bug or a false positive). In this paper we present
the key challenges and paths that further researchers may
follow to support automated testing in dynamic languages.

First we present the principles of random automated test-
ing in Java (Section 2) by explaining the strategies of YETI,
one of the best automated random testing tools. We subse-
quently identify the challenges that dynamic languages pose
and we sketch some possible tracks of solutions (Section 3).
The focus of this article is not to propose a solution but to
stress the challenges that have to be addressed to support au-
tomated random testing for dynamically typed languages.

2. Random Automated Testing in Java: The
Facts

2.1 Random Automated Testing Principles
To explain how random testing tools for statically typed lan-
guages work, we present how the York Extensible Testing
Infrastructure (YETI) – a language agnostic automated ran-
dom testing tool – works.

YETI is an application coded in Java. It tests programs at
random in a fully automated manner. It is designed to sup-
port various programming languages – for example, func-
tional, procedural and object-oriented languages can easily
be bound to YETI. YETI is a lightweight platform with
around 10,000 lines of code for the core, the strategies and
the Java binding and is available under BSD license.

Figure 1 shows the general process of an automated ran-
dom testing tool. An instance database is created with some
seeds (for example, 0, 1, -1 for numbers). Such database
is used during the instance generation period. The instance
generation step requires instances for both the receiver and
arguments of a message. It uses class type profiles (types
method declaration) which are stored in another database.

1 2011/8/16

Then tests are created by calling methods, the tests may
check the returns values and the thrown exceptions. During
tests execution, when a new instance is created it may be
added to the instance database. To determine whether a fault
is actually found, the declared exceptions and precondition
(argument types are used) are key to determine whether a
fault is a bug in the analyzed software or whether it is a false
positive.

Instance
Generation

Error

Test
Generation

Class type
profile

database

Test
Execution

on success instances
created during tests

may be added to the data

Instance
database

on error template profile
is improved

and bugs are registered

Bugs

Figure 1. Automated random testing process

YETI contains three parts: the core infrastructure, the
strategies, and the language-specific bindings. The core in-
frastructure contains the code to represent routines (methods
or functions), a graph of types (class profile database), and a
pool of typed objects (instance database). Routines use argu-
ments of certain types and return an object of a certain type
(if any) for which they are considered constructors.

// Input: Program/Strategy

// Output: found bugs

foundBugs = new Vector<Bug>();

M0 = strategy.getModuleToTest();

while (not endReached){

R0=strategy.getRandomRoutineFromModule(M0);

Vector<Variables> arguments =

new Vector<Variable>();

for(T in R0.getArgumentTypes()){

arguments.addLast(strategy.getInstanceOfType(T));

}

try {

new Variable(languageBinding.call(R0,arguments));

} catch (Exception e) {

if (languageBinding.representsFailure(e)){

foundBugs.add(e);

}

}

}

Figure 2. Algorithm of automated random testing. Bolded
source lines show where a dynamic language cannot provide
the necessary typing information.

Similarly to other automated random testing tools, YETI
follows the algorithm in Figure 2. In this algorithm, getMod-
uleToTest, getRandomRoutineFromModule, and getInstance-
OfType are defined within the strategies. How to make a call

(call) and how to interpret the results (representsFailure) are
both defined in the language binding.

reuse value from
object pool

generate value at
random

pick value from the
object pool

return null

return value

Pnew

1-Pnew

Pnull 1-Pnull

generate value at
random

Figure 3. Generation of values.

By default YETI uses a strategy that generates calls and
selects values at random. Two main probabilities can be ad-
justed: the percentage of null values pnull, and the percent-
age of newly created objects to use when testing pnew. Fig-
ure 3 shows the overall process followed when YETI needs
an instance for a test and calls getInstanceOfType. By default,
YETI uses 10% as a default value for both pnew and pnull.

In the Java binding, YETI uses class loaders to find defini-
tions of classes to tests, reflection to make calls, and a sepa-
rate thread to run them. Any undeclared RuntimeException or
Error is interpreted as a failure and failures are grouped into
unique failures by comparing their call stack trace beyond
the first line. Receiver and arguments are discarded: to avoid
the fact that if we would reuse sets of arguments/receiver we
could trigger the same bug.

To understand how strong typing impacts the testing pro-
cess, we identify 4 main areas where the typing informa-
tion is used extensively. For each of these areas, we indicate
whether a dynamically typed language has an easy way of
supporting it:

Type description and pool of objects. Types are necessary
to construct message arguments. In YETI, a type is
mainly made of a list of supertypes, a list of subtypes,
a list of “constructors” (by constructors we mean method
returning an instance of the class), and a list of instances.
Constructors are all routines that return a value of the
type, and the list of instances is a pool of objects of that
type.
Many dynamically typed languages offer support for list-
ing existing instances for a given class, which can be used
as example for feeding the testing tool. Supertypes and
subtypes are easily and efficiently accessible via reflec-

2 2011/8/16

tion. It is however more difficult to know the return type
of a routine because 1) it is not declared and 2) it may
vary over multiple executions.

Instance generation. In YETI, generating an instance is
done through a “constructor” for such an instance. If the
routine to call needs arguments, these are typed and it is
easy to reuse instances of such types already present in
the system through their type or create new ones through
their own constructors.

Test generation and execution. To generate and execute
a test, YETI either uses or generates instances of the
needed types and makes a call.
Without restriction to given types for the arguments, call-
ing a method with random instances is very unlikely to
produce a meaningful test.

Feedback and bug identification. In YETI, because the
type is supposedly valid due to the typing information,
collecting runtime exception is meaningful as only a su-
perficial check on the APIs is needed to make sure that
unique failures are in fact bugs.
As mentioned previously, testing an untyped routine
leads to calls that have a high risk of failing. It is also
not useful to know that a routine fails when using ar-
guments of types which were not foreseen to be usable
there.

As we can see in the previous description, typing infor-
mation is used at every single step of the process.

2.2 YETI Facts
By using such typing information YETI is able to run a mil-
lion tests per minute – this represents a barely noticeable
overhead over reflexive invocation. So far, YETI found thou-
sands of bugs and was able to test many programs such as the
Java core libraries, GWT 2, and all programs in the Qualitas
Corpus [TAD+10]. YETI also has a graphical user interface
which allows the test engineers to monitor how a testing ses-
sion performed so far.

3. Challenges for Dynamic Languages
We now explore the challenges and possible solutions posed
by the absence of static types to support automated random
testing.

3.1 Instance generation and execution
Obtaining instances to execute the tests is key in automated
random testing. Instances are necessary to feed random tests.
Constructing messages (which received objects as argument)
intended to be sent to object receivers are used as input of a
test.

In Smalltalk, the fact that no constructor is natively
supported by the language makes the generation of well

2 http://code.google.com/webtoolkit/

formed instance challenging. One way to circumvent this
lack of constructor is to use existing instances (and thus well
formed) as an input for random testing. An approach is to
use heuristics based on method categories and some patterns
for methods. The fact that in Pharo and Squeak the method
new automatically invokes the method initialize is a good step
to obtain more systematically well initialized instances.

Getting instances is easily done through exploring the in-
stances currently in the system. In Smalltalk, it is possible
to get access to all the instances of a class using messages
allInstances. Reflection is simple and efficient to use. Access-
ing existing instances can provide specific information that
generated instances could not present.

However, using existing instances as input in random
tests presents two issues:

1. Partially initialization – Since Smalltalk does not offer
any guarantee on whether an object is properly initialized
or not, the standard Pharo distribution contains uninitial-
ized or partially initialized instances. Those objects have
their invariant broken. As an example we have found an
instance of the class Point which contains the nil value as
x and y and totally unused by the system. A properly ini-
tialized point contains numerical values instead.

2. Fragile objects – Randomly modifying existing objects
may lead to situation where the system is put in a danger-
ous state. Such objects may either be discarded for not
being used as a random test input or be copied. Copy-
ing objects may be an option, however it may lead to an
overhead in case of a deep copy, if ever possible at all.

In addition, since we do not know the supposed type of
the arguments, it is not clear what instances to pass.

Using type inference. To know the argument type, one
possibility is to use type inference. Different approaches are
possible: lightweight with low precision [PMW09] or heavy
computation (and with the problem of the availability of the
approach) [SS04]. We believe that a lightweight approach
is a first step to be used. As an example, RoelTyper only
considers single method body to identify argument type of
the method, therefore the precision of the type information is
low. Another heavy approach could be to annotate methods
with type information but this clearly does not scale.

Using libraries like MethodWrappers or other techniques
to monitor method execution [BFJR98, Duc99] could be a
possible way to collect type information. However, this is
not the panacea because (1) we face a bootstrap problem -
we need to use some pre-existing information (existing tests
could be used to run but again the results would be driven
by test quality and in absence of large coverage we may get
incomplete type information). In statically type languages,
the process does not require existing tests to run. (2) not all
the methods should be executed randomly.

3 2011/8/16

Executing destructive methods. Once we get access to in-
stances to which messages can be sent, we should consider
which methods to invoke. There again care is important be-
cause it is not trivial to identify potentially destructive meth-
ods. Smalltalk offers powerful features such as pointer swap-
ping, class changing, quitting the VM, unloading classes....
Not invoking these methods is important. The Finder tool
manually specifies a list of problematic methods. Another
approach can be to ask programmers to tag the methods with
meta information. As a general point, we believe that know-
ing methods which may endanger the system when run ran-
domly is a valuable information that can make the system
more robust in presence of tools such as the Finder in Pharo
or Squeak [BDN+09].

3.2 How to identify errors?
While the other problems can be fixed with the (tedious)
addition of meta-data, identifying that a bug is found is a
difficult question. Indeed raised exceptions are not part of
method declaration in Smalltalk as this is the case in Java.
Therefore we cannot simply identify a bug by looking if the
exception raised was part of the declared raised exception.
In addition, since there are no contracts, they cannot be
used to filter wrongly passed arguments. In addition, since
a wide range of objects can be passed as arguments (and
could be invalid) we cannot use the fact that the arguments
are valid when analyzing an exception. The combination
of the absence of argument type, contracts and declared
exception is clearly what makes the real error identification
a challenge.

As a first way to distinguish between various situations
we can consider the object receiver contained in the top
frame of the method stack and to identify different errors.

Receiver on top of stack and message not understood.
The idea here is how do we make sure that one sends mes-
sages that are understood by the receiver. Such situation
should not happen because the tools should enumerate the
methods from the receiver class. However, even such simple
assumption is not always true: a message can be cancelled
in superclasses using “should not implement” exception and
superclass methods are banned from subclasses.

Receiver not on the top of the stack and error. This is
the regular case when we get an error is because you send
a message and this method sends another one and along the
road there is an error. The question then is what to do? Such
a situation can arise due to different causes:

Badly initialized objects. For example, executing methods
on an object that is not well initialized or whose invariant
is broken can happen. The automatic detection of such
case is difficult. Such object can either be created by a
bogus initialization or the result of inadequate method
execution. It is thus important to know that instances in
the instance database are in a valid state.

Breaking precondition. It may happen that messages not re-
specting non explicit invariant lead to errors. For example
sending the message reciprocal to 0@0 leads to a problem
because x reciprocal does not work on number zero.

(0@0) reciprocal
-> x reciprocal @ y reciprocal.

-> x reciprocal

Probably the receiver being different of 0 should be a
precondition on Number»reciprocal and similarly, x != 0
and y != 0 should be the precondition of Point»reciprocal.
Another example is #() first (accessing the first element
of an empty array). Here clearly a precondition would
help to capture that this behavior is not an error but just
a normal behavior. In addition considering specific error
raised by the class can be a good starting help.

#() first
-> errorSubscriptBounds:

The definition of the at: method (which leads to the previ-
ous error) shows that some errors could be used to build
up a list of raised errors. Such errors could then be used
to define preconditions.

Object>>at: index
"Primitive. Assumes receiver is indexable.

Answer the value of an indexable element in the receiver.
Fail if the argument index is not an Integer or is out of bounds.
Read the class comment for a discussion about that the fact
that the index can be a float."

<primitive: 60>
index isInteger ifTrue:

[self class isVariable
ifTrue: [self errorSubscriptBounds: index]
ifFalse: [self errorNotIndexable]].

index isNumber
ifTrue: [^self at: index asInteger]
ifFalse: [self errorNonIntegerIndex]

Since there is no contract declared, software bugs can-
not be distinguished from contract violation. This clearly
shows that preconditions could be useful for automated ran-
dom testing in addition to the other properties they bring to
software quality.

3.3 Understanding results
While performing some preliminary experiments with au-
tomated random testing in Smalltalk, we identified also the
following challenge: How can we identify the impact of a
bogus instances on the resulting generated errors?

For example we got an instance of Point, the point nil@nil
as an available instance and it generated a lot of false posi-
tives by generating errors when executing methods that were

4 2011/8/16

totally correct when we picked any other instances available
in the system. We identified this instance in a ad-hoc way
and we believe that tools to support the understanding of the
results are needed. Notice that this problem does not happen
in YETI because YETI uses types and contracts as speci-
fications for valid input. In Smalltalk, this is obviously not
possible so the nil@nil example is a good one.

If somebody had specified formally Point, then nil@nil
would have been illegal. In the case of Pharo, this instance
lives in the system, so it was taken as possible input, and
polluted your output. We analyzed why such instance was
there and it was unused. Since Pharo 1.3 this instance was
removed, still this is an interesting case for understanding
the impact of an instance of the resulting method that are
raising errors.

To illustrate this challenge, here are the data we got when
performing our experiments. The existing instance nil@nil
broke a lot of messages: in our experiments we obtained
3695 problematic messages. While checking the problematic
messages we found that we obtained 371 buggy receivers
(points with at least one zero) and a number of buggy meth-
ods r, reciprocal, guarded, negated, degrees, max, theta, as-
FloatPoint, abs, isZero, truncated, rightRotated, eightNeighbors,
ceiling, leftRotated, asIntegerPoint, min, normal, transposed,
normalized, sign, floor, fourNeighbors, deepCopy, fourDirections,
angle, rounded.

When filtering the buggy selectors by removing the bogus
instance (nil@nil) from the instance database, we reduced
the number of problematic methods to two: normalized and
reciprocal. Such methods raised errors because of points with
one zero. We identified the problems with nil@nil because we
looked at all the instances that generated errors and noticed
it. In this case this was simple: we got points with nil, or at
least one zero. We tried to see how a tool could have help us
and report a problem but we did not found a simple approach
based on a correlation or statistics. In our dataset, sorting
the number of problematic methods according to the receiver
was not a great help.

Being able to represent results and the influence of re-
ceiver/arguments on the generated problems is thus of im-
portance to reduce noise.

4. Paths towards random testing
To enable automated random testing for dynamic languages,
we propose to follow these milestones:

• Dynamic Type Inference using Random Testing. One of
the first actions to be done is to use type inference to get
some type information. The minimum is to use a sim-
ple static analysis as proposed by RoelTyper [PMW09].
Combining an approach like the one of RoelTyper with
the type collected by MethodWrapper is an interesting
track to follow. However, using MethodWrapper or any
execution based appraoch requires both tests availability
and

• Random testing for dynamically typed languages using
existing instances. Once type inference is available, it be-
comes possible to use instances in an image and perform
either random testing or exhaustive testing of programs
in an automated way. The performance associated to the
testing is then dependent on the quality of the existing in-
stances. It seems thus likely that such a technique should
be applied while the program to test is stalled after being
run for a while.
In parallel, identifying classes defining an initialize method
(or inheriting one) should be considered to identify
classes where creating instances using the method new
may provide well initialized instances.

• Automated random testing for dynamically typed lan-
guages. The next step is to be create meaningful instances
at random. As of now, creating random instances is easy.
Making sure these are meaningful is quite difficult with-
out additional support. It might be useful in this case to
add support for contracts (pre-, postconditions, and class
invariants) and to let programmers specify such contracts
to decide whether instances are valid for testing. This
might, for example, allow the filtering for testing of in-
stances such as nil@nil.

• Sandboxing for testing. As a more long-term goal it might
also be interesting to consider how to restrain testing so
that it does not corrupt the tested images and external
resources.

Acknowledgements
This work was supported by Ministry of Higher Education
and Research, Nord-Pas de Calais Regional Council and
FEDER through the ’Contrat de Projets Etat Region (CPER)
2007-2013’ and the Royal Academy of Engineering.

References
[BDN+09] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz,

Damien Pollet, Damien Cassou, and Marcus Denker.
Pharo by Example. Square Bracket Associates, 2009.

[BFJR98] John Brant, Brian Foote, Ralph Johnson, and Don
Roberts. Wrappers to the rescue. In Proceedings Eu-
ropean Conference on Object Oriented Programming
(ECOOP’98), volume 1445 of LNCS, pages 396–417.
Springer-Verlag, 1998.

[COMP08] Ilinca Ciupa, Manuel Oriol, Bertrand Meyer, and
Alexander Pretschner. Finding faults: Manual testing
vs. random+ testing vs. user reports. In IEEE Interna-
tional Symposium on Software Reliability Engineering
(ISSRE), Nov 2008.

[CPL+08] Ilinca Ciupa, Alexander Pretschner, Andreas Leitner,
Manuel Oriol, and Bertrand Meyer. On the predictabil-
ity of random tests for object-oriented software. In In-
ternational Conference On Software Testing, Verifica-
tion And Validation (ICST 2008), July 2008.

5 2011/8/16

[CPO+11] I. Ciupa, A. Pretschner, M. Oriol, A. Leitner, and
B. Meyer. On the number and nature of faults found
by random testing. Software Testing, Verification and
Reliability, 21(1):3–28, 2011.

[Duc99] Stéphane Ducasse. Evaluating message passing control
techniques in Smalltalk. Journal of Object-Oriented
Programming (JOOP), 12(6):39–44, June 1999.

[OT10] Manuel Oriol and Sotirios Tassis. Testing .net code
with yeti. In 15th IEEE International Conference on
Engineering of Complex Computer Systems, ICECCS
2010, Oxford, United Kingdom, 22-26 March, 2010.
IEEE Computer Society, 2010.

[PMW09] Frédéric Pluquet, Antoine Marot, and Roel Wuyts. Fast
type reconstruction for dynamically typed program-
ming languages. In DLS ’09: Proceedings of the 5th
symposium on Dynamic languages, pages 69–78, New
York, NY, USA, 2009. ACM.

[SS04] S. Alexander Spoon and Olin Shivers. Demand-driven
type inference with subgoal pruning: Trading precision
for scalability. In Proceedings of ECOOP’04, pages
51–74, 2004.

[TAD+10] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han,
Jing Li, Markus Lumpe, Hayden Melton, and James
Noble. Qualitas corpus: A curated collection of java
code for empirical studies. In 2010 Asia Pacific Soft-
ware Engineering Conference (APSEC2010), Decem-
ber 2010.

6 2011/8/16

PHANtom: a Modern Aspect Language for Pharo Smalltalk

Johan Fabry ∗ Daniel Galdames
PLEIAD Laboratory

Computer Science Department (DCC)
University of Chile – Santiago, Chile

http://pleiad.cl

Abstract
In the context of our research on Aspect-Oriented Program-
ming, we have a need for a modern and powerful aspect lan-
guage for Smalltalk. Current aspect languages for Smalltalk
however fall short on various points. To address this deficit,
we elected to design and build PHANtom: a modern aspect
language for Pharo Smalltalk. PHANtom is designed to be
an aspect language in the spirit of Smalltalk: dynamic, sim-
ple and powerful. PHANtom is a modern aspect language
because it incorporates the best features of languages that
precede it, includes recent research results in aspect interac-
tions and reentrancy control, and is designed from the onset
to be optimized and compiled where possible. In this paper
we present the language and outline salient points of its cur-
rent implementation.

Keywords PHANtom, Aspect-Oriented Programming,
Smalltalk

1. Introduction
To address the issue of code for one concern being scattered
among different classes in an application, Aspect-Oriented
Programming (AOP) proposes to modularize such cross-
cutting concerns into a new kind of module: an aspect. As-
pects are a different kind of module because they not only
implement the behavior of a concern, but also specify when
this behavior should be invoked. To allow this, conceptu-
ally each step of the application is reified in what is called

∗ Partially funded by FONDECYT project 1090083

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
IWST’11 Edinburgh, Scotland
Copyright © 2011 ACM [to be supplied]. . . $10.00

a join point. The execution of the application consequently
produces a stream of join points that is presented to the as-
pects. The aspects identify relevant join points, i.e., steps in
the execution of the application, by means of pointcuts that
match on the stream of join points. The behavior of the as-
pect, called advice, is linked to the pointcut such that when a
pointcut matches, the corresponding advice is executed. To
make this all possible, a special tool called the aspect weaver
implements all the required infrastructure. One possible im-
plementation strategy is that the aspect weaver is a compiler.
This compiler modifies each source code location that pro-
duces join points of interest to the aspects, locations known
as join point shadows. At each join point shadow, the mod-
ified code then executes the required advice, as specified by
the aspects.

A significant part of the research we perform is in the
domain of AOP, where we are interested in interactions be-
tween aspects [3], as well as Domain-Specific Aspect Lan-
guages (DSALs) [4]. For our latest experiments with AOP
we chose to use Pharo Smalltalk, which meant we also re-
quired an aspect language that incorporates recent AOP re-
search results, is solid, is powerful and is extensible. When
evaluating existing aspect languages for Smalltalk we how-
ever found these did not meet our criteria and hence set out
to build our own language, called PHANtom.

PHANtom is designed to be an aspect language in the
spirit of Smalltalk: dynamic, simple and powerful. PHAN-
tom is a modern aspect language because it incorporates the
best features of languages that precede it, includes recent re-
search results in aspect interactions and reentrancy control,
and is designed from the onset to be optimized and com-
piled where possible. PHANtom adds to the state of the art
in aspect languages as its joining of recent research results is
new. Moreover, it improves on existing aspect languages in
Smalltalk on various points, e.g. by allowing for advice exe-
cution ordering, as is discussed later. We therefore consider
that PHANtom is also of interest to the Smalltalk program-
mer wanting to use AOP.

In this paper we present the PHANtom language, along
with some relevant parts of its current implementation.

The structure of the paper is as follows: in Section 2 the
language is introduced, starting with the core interplay be-
tween join points, pointcuts, advice, inter-type declarations
and aspects in Section 2.1. This is followed by a presentation
of the advice ordering features, in Section 2.2, and control of
reentrancy in Section 2.3. Section 3 shows points of interest
in the current implementation of PHANtom. This is followed
by a discussion of related work in Section 4, before the paper
concludes and presents future work in Section 5.

2. The PHANtom Language
PHANtom is designed to be an aspect language fully in the
spirit of dynamic languages like Smalltalk. This is achieved
by combining dynamism, simplicity and power. Firstly,
PHANtom is dynamic with regard to changes in the code
base: it allows for classes and aspects to be added, removed
and changed at runtime. PHANtom is also dynamic in the
sense of “dynamic AOP” which means that aspects can be
added to and removed from the system at runtime, through
the process of deployment and undeployment. Secondly, we
aim for simplicity by having a minimal set of language con-
structs who are as free from usage restrictions as possible.
Moreover each of these has a straightforward and uniform
behavior. Thirdly all language constructs are first class ob-
jects, thus providing all the power of first-class constructs.
Additionally, PHANtom provides aspect language features,
absent in other aspect languages, that give programmers
more power over the order of aspect execution and more
powerful reentrancy control.

We call PHANtom a modern aspect language for three
reasons. First, it was designed taking into account existing
aspect languages. It incorporates what we believe to be the
best features of these languages. Second, it incorporates re-
cent important research results that have not yet been used
together. Last but not least, it was designed with compila-
tion and optimization in mind. While currently PHANtom is
an interpreted language, key future work is to compile as-
pects. For this we plan to use the new compiler that is being
developed for Pharo, Opal, which we selected due to its ex-
tensibility features.

A number of existing aspect languages have been influ-
ential in the design of PHANtom. We mention these influ-
ences here but refer to related work for a description of these
languages. From AspectJ [8] we have taken the use of pat-
terns in pointcuts, advice ordering through precedence dec-
larations. AspectS [7] inspired our dynamic AOP features,
the use of method wrappers [2], and having all constructs
available as first class objects. Eos-U [9] introduced what
is known as a more symmetric view of AOP, which is also
present in PHANtom: aspects are as classes in that they can
be instantiated, their behavior is present in methods, and as-
pects can match join points of other aspects.

The contributions of PHANtom to the aspect language
research domain is the specific combination of the advanced
language features of advice ordering (see Section 2.2) and
reentrancy control (see Section 2.3). Also, to the best of our
knowledge, this is the first time a granularity refinement has
been proposed to the static AspectJ aspect ordering scheme
(see Section 2.2). Beyond these contributions and consider-
ing aspect languages in Smalltalk, to the best of our knowl-
edge, PHANtom is the only aspect language for Smalltalk
that uses patterns for pointcut definitions, advice ordering
and reentrancy control, and was designed with optimization
in mind.

Currently, no special syntax has been developed for
PHANtom. Instead, aspects are built by constructing their
component parts using standard Smalltalk, i.e., by instanti-
ating the corresponding Smalltalk objects and adding them
to the aspect as needed. In this we follow the Smalltalk phi-
losophy that everything is realized by sending messages to
objects, even the creation of classes (which is the sending of
the subclass: message to a class). For the sake of concise-
ness, a special syntax for PHANtom could be elaborated, but
we consider this as future work.

2.1 Overview of the Core of PHANtom
We now proceed with giving an overview of core of PHAN-
tom, by means of some illustrative examples. We show here
the interplay between pointcuts, advice, inter-type declara-
tions and aspects by means of a small example aspect de-
scribed below. In the next sections we detail more advanced
capabilities of PHANtom: advice ordering (Section 2.2) and
reentrancy control (Section 2.3).

As an example initial aspect, in this section we build an
extension to the SUnit test suite that counts the number of
assertions that are performed in the execution of a given
collection of test classes. Note that, due to the simplicity of
the example, alternative implementations may be envisioned
that provide the same behavior. As it is not the goal of this
paper to argue for AOP, but to introduce PHANtom, we have
chosen to keep the example plain to ease readability of this
text.

2.1.1 Join Point Model
In AOP, the join point model of an aspect language defines
the events that are produced by the application when it runs,
and their properties. Each such event is a join point, and an
aspect defines at which join points its behavior is executed.

Following the goal of simplicity, and in accordance with
the Smalltalk philosophy that a computation consists of ob-
jects and messages, the join point model of PHANtom con-
sists solely of method executions. Also, each join point con-
tains a reference to the sender, the receiver and the arguments
of the message that lead to the method being executed.

2.1.2 Pointcuts
Pointcuts are what is also known as the quantification part
of the aspect: a pointcut is responsible for determining when
the behavior of an aspect is triggered. More precisely, point-
cuts are predicates over the stream of join points that is emit-
ted by the base application as it runs. When pointcut matches
a join point, the advice that is linked to that pointcut exe-
cutes.

Basic Pointcut Definitions
In PHANtom, pointcuts use static information of the join
point to decide whether they match, i.e., pointcuts filter the
join point stream based on the type of the receiver and the
selector name. Pointcuts are instances of the PhPointcut
class and an example instantiation of a pointcut is below:

PhPointcut receivers: TestCase selectors: assert: .

The above code matches all executions of the method
with selector assert: where the receiver of the method is an
instance of TestCase (excluding its subclasses).

Type Pattern Meaning
Receiver + Class and Subclasses
Receiver * String Match
Selector #() All Selectors
Selector One Keyword of Selector

Table 1. Patterns and their meaning.

PHANtom allows AspectJ-like patterns to be used when
specifying a receiver class as well as selectors, outlined
in Table 1. Allowed patterns for receiver class are as in
AspectJ. They allows for the use of two special symbols:
a + which is used as a suffix to a class name, and a *
which is used anywhere within the class name. The + in-
dicates that the receiver of the method should be an instance
of the indicated class, or an instance of a subclass. The *
is the string match like in regular expressions. For selec-
tor patterns, an array of size zero: #(), matches all selec-
tors and the wildcard may also be used1. This wildcard
matches unary and binary messages, as well as one key-
word in a keyword message. In a keyword message with
multiple keywords, : matches one keyword and may be
used more than once. For example, with: :with: : matches
with:for:with:and:, with:with:with:with:, and so on.

Using the patterns we now show the pointcut that
will be used in the example assertion count aspect. Let
us assume we wish to count all assertions,which can
be either assert:, assert:equals:, assert:description: or as-
sert:description:resumable:. However, we only wish to do
this for a select group of test case classes, namely all sub-
classes of ACTestCase. The pointcut that matches those join
points is given below:

1 as * is a valid selector.

PhPointcut receivers: ACTestCase+
selectors: #(assert: assert: : assert: : :)

This code shows the use of the + symbol and the abil-
ity to use an array of selectors. The use of patterns has been
described above. Using arrays of selectors allows us to de-
fine a pointcut that matches on different selectors. Recall that
passing an array of size zero matches on all selectors. The re-
ceivers may also be specified as an array, where each element
in the array is a class name pattern.

Context Exposure
Context exposure is the means by which information that is
present in the join point is made accessible to the advice.
Declaring this in the pointcut allows the aspect weaver to
perform optimizations: avoiding creation and/or reification
of elements that are not used in the advice [6]. If context
exposure is specified in a pointcut, the corresponding advice
will be passed an instance of PhContext that contains the
specified context values. These can be as follows:

• receiver includes the object that received the message
• sender includes the object that sent the message
• selector includes the selector of the message
• arguments includes the arguments of the message
• proceed allows for the original behavior to be invoked
• advice allows for advice execution order to be modified

Most of the above context values are straightforward. An
example of the use of proceed will be given in Section 2.1.3
and an example of using advice is present in Section 2.2.2.
Below we show how to add context exposure to the above
pointcut, specifically including the receiver object in the
context. This yields a pointcut that will be useful for our
example aspect, and hence we store it in a temporary variable
for later use.

pc := PhPointcut receivers: ACTestCase+
selectors: #(assert: assert: : assert: : :)
context: #(receiver)

Package Restrictions
A different pointcut that might be used for the example is
given below. It assumes all tests to be counted have a name
that starts with Test and are located in a category named
Tests-Mine.

PhPointcut receivers: Test
selectors: #(assert: assert: : assert: : :)
context: #(receiver)
restrict: #(Tests--Mine).

This pointcut uses a * as receivers specification to indi-
cate all classes that start with the name Test. It also pro-
vides a restrict: specification, which restricts the matching

of classes to those which are present in the array of specified
categories.

Note that the above pointcut does not match on instances
of metaclass, even though their name, e.g. TestFoo class,
matches the regular expression, Test* in the example. To
mach instances of metaclass, the receivers pattern must in-
clude the word class. In the example, a match would instead
be made when using the pattern Test* class.

Pointcut Combinations, Custom Pointcut Matching
Pointcuts can also be combined using logical and, or and not
operators. PhPointcut instances understand the correspond-
ing messages pand:, por: and not. The former two take a
second pointcut as argument and perform, resp. the logical
and, or2. The context exposure of the resulting pointcut is the
union of the context exposures of both pointcuts. Sending a
not returns the negation of the receiver pointcut.

To provide more power for pointcut specification, PHAN-
tom allows for the programmer to define custom pointcut
patterns if required. This is made possible by using the Pe-
titParser parser generator framework [10] in the implemen-
tation of the matching of pointcut patterns. Instead of using
a string or array as argument of the receivers or selectors
specification, a PetitParser parser can be passed as an argu-
ment for either, or both. This parser is given the complete
class description of candidate classes, or candidate selec-
tor strings, respectively. If the parser matches, the class is
a valid receiver or selector. A complete discussion of Pe-
titParser parsers is out of the scope of this paper. We only
provide the following example that uses two custom parsers.
It matches the count and count: messages of instances of
classes that have one instance variable named count.

PhPointcut
receivers: (#any asParser plusGreedy:

instanceVariableNames: count asParser)
selectors: (count asParser , : asParser optional).

2.1.3 Advice
Next to the quantification part of the aspect, the pointcut,
the advice determines the behavior to be executed when
a pointcut matches. In PHANtom, we choose to have the
behavior implemented as regular methods, inspired from
Eos-U [9]. Advice, which are instances of PhAdvice, merely
associate a pointcut to the execution of this behavior. This
is different from Eos-U, which does not have the notion of
advice. It instead places responsibility of determining what
method to run on the pointcut itself. This however restricts
reuse of the pointcut, as it is now tightly coupled to a specific
method name for the advice. Furthermore, the interplay of
specifying a method in the pointcuts with combining two
pointcuts (with pand, por) is not immediately obvious. An

2 They are called thus to avoid an overly aggressive smalltalk compiler
optimization of the and: and or: messages

argument can be made for various different choices of when
and how the behavior of one of the constituent pointcuts
should be executed when the composed pointcut matches.
This adds complexity to the language, which we aim to
avoid.

Creation of a PhAdvice takes as arguments the pointcut to
be used, the name of a message to send and its receiver, and
when this message must be sent. The sent message will be
given one argument: the join point context as exposed by the
pointcut. Note that, for the sake of brevity, in the remainder
of this text we will use the term executing the advice to mean
the execution of the method that results from the message
sent by the PhAdvice instance when the pointcut matches.
Also, in this section consider a situation where only one
advice needs to execute at a given join point. The case where
multiple advice execute at one join point is discussed in
detail in Section. 2.2.

Below is the advice for our assertion count example:

adv := PhAdvice pointcut: pc
send: #incCount: to: self
type: #after

This code specifies that we wish that matches of the
pointcut pc, which we declared in Section 2.1.2, trigger the
sending of the incCount: message to self (whose nature will
be revealed in Section 2.1.5). This message will be sent after
the assertion method has executed.

There are three types of advice: before, after and around
advice. Before advice executes before the join point, i.e., be-
fore the selected method execution, after advice executes
after the join point and returns the value of the join point
execution. Around advice executes instead of the selected
join point, effectively replacing the original behavior of the
method with the behavior of the advice. When the advice ex-
ecutes it is however possible to invoke the original behavior
of the method by sending the proceed message to the con-
text. The original behavior can be executed with different
arguments, by using the proceed: message and passing an
array of new arguments. Note that the proceed and proceed:
messages may be sent any number of times.

Strictly speaking, before and after advice are redundant.
This is as the behavior of the former can be obtained by using
an around advice that ends with a proceed, and the latter by
an around advice that starts with a proceed (returning the
result of the proceed send at the end of the advice). The use
of before and after advice however allows the aspect weaver
to perform optimizations, as they do not require the original
behavior, nor receiver and arguments to be reified into the
context.

To allow for more flexibility and conciseness, and in-
spired from AspectS, instead of a message send specification
a block may also be used by a PhAdvice. The block takes as
argument the context, and instead of sending a message, ad-
vice execution consists in evaluating the block. For example,

the code below will print the receiver on the transcript before
the assertion method executes.
PhAdvice pointcut: pc

advice: [:ctx | Transcript show:
(ctx receiver asString); cr.]

type: #before.

Note that this feature is mainly intended as a facility for
fast prototyping. Its use at a larger scale is discouraged as
it does not combine well with advanced features such as
dynamic advice ordering (see Section 2.2).

2.1.4 Inter-Type Declarations
Inter-type declarations, also known as introductions or struc-
tural aspects, are a means to perform modifications of classes
such that they contain the desired state and behavior required
for the functionality of the aspect. In aspect languages for
statically typed languages, e.g. AspectJ, these modifications
may also include modifications to the type hierarchy to ob-
tain the required behavior.

In PHANtom, inter-type declarations are purely a means
to permit modular class extensions. They are instances of
PhClassModifier and they specify additions of variables and
methods. This may be performed both at instance and at
class side of the target class. The motivation of this class
extension mechanism in addition to the standard class exten-
sions in Pharo is twofold. First, inter-type declarations allow
the addition of variables, whereas standard class extensions
do not allow variables to be added. Second, the inter-type
declarations can be textually contained within the definition
of the aspect. Arguably this is the module where they should
be placed. Standard class extensions place their definition in
the target class, which then also appears in the same category
of the aspect.

For our running example, we need the test cases to con-
tain a variable that maintains the number of times that asser-
tions have been called. For it to be available to the aspect we
also require accessor methods that expose this variable. This
is realized by the below two inter-type declarations:
cm1 := PhClassModifier on: ACTestCase

addIV: phacount
cm2 := PhClassModifier on: ACTestCase

addIM: phacount
↑phacount ifNil: [phacount := 0] .

cm3 := PhClassModifier on: ACTestCase
addIM: phacount: anObject

phacount := anObject .

The first PhClassModifier instance declares the addition
of a phacount instance variable to the ACTestCase class.
The second instance adds the corresponding accessor to the
ACTestCase class. The third declares the corresponding mu-
tator. As in AspectJ, no patterns for a type are used here, so
the target class is specified directly.

When the aspect is deployed (see Section 2.1.5), the inter-
type method variable additions will be added to the target

class that is then recompiled. If the class already contains
this variable, an exception will be thrown. Similarly, method
declarations will be compiled within the scope of the target
class and added there. If methods with the same selector are
already present in the class, an exception will be thrown.

To add class variables, resp. class methods, the PhClass-
Modifier needs to be instantiated with the on:addCV:, resp.
on:addCM: messages.

2.1.5 Aspects and their Deployment
An aspect is a class that modularizes cross-cutting behavior,
by means of pointcuts, advice and inter-type declarations.
In PHANtom, aspects are subclasses of the PhAspect class,
and contain a collection of PHAdvice and PHClassModifiers
(and each PHAdvice keeps a reference to a PhPointcut in-
stance). Instances of aspects are not automatically active. To
add the inter-type declarations and have advice execute when
their pointcuts match, aspects must be deployed. Conversely,
a deployed aspect can be undeployed, which removes its ef-
fects on the system.

To complete our running example, we first need to sub-
class PhAspect and add the initialize method as below,

initialize
|pc adv cm1 cm2 cm3|

”... take pc, adv, cm1, cm2, cm3 from above ...”

self add: adv.
self addClassModifier: cm1.
self addClassModifier: cm2.
self addClassModifier: cm3.

self install.

Adding the advice to self achieves that the incCount:
message is sent to the aspect after all executions of the assert
methods identified by the pointcut of the advice. Adding the
three class modifiers ensures that ACTestCase understands
the phacount and phacount: messages and behaves accord-
ingly.

All that remains to be done is to define the behavior of
incCount:, which is done by adding the below method to our
aspect:

incCount: aContext
aContext receiver phacount:

aContext receiver phacount + 1

The implementation of incCount: uses the context to ob-
tain the receiver (an instance of ACTestCase or a subclass
thereof) and simply increments the count by one.

Using the aspect is straightforward, as instantiating sends
it the install message that deploys it in the system. This
immediately makes all ACTestCase and subclass instances
count their assertions. The assertion count of each can be

obtained through the accessor method when needed. Send-
ing the uninstall message to the aspect undeploys it3.

Note that the aspect weaver maintains a list of all installed
aspects, which is obtained as follows: PhAspectWeaver in-
stalledAspects. This can be useful to uninstall aspects whose
references are out of scope.

This concludes our overview of the core of PHANtom,
where we discussed how instances of PhPointcut, PhAd-
vice, PhClassModifier and PhAspect can be combined to
modularize a cross-cutting concern.

2.2 Advice Ordering
In the above discussion we assumed that at a given join point
only one advice will execute. In this section we detail the be-
havior of PHANtom when various advice need to execute at
one given join point. We now first specify the default behav-
ior, before considering the need for program-specific behav-
ior and detailing the two advice ordering features offered by
PHANtom.

By default, if multiple advice specify that they should be
run at a given join point, they will be run in sequence. The
entire process is illustrated in Figure 1. First all before advice
are run in an unspecified order. Then an around advice is
run (if any need to be run). If this advice sends a proceed
message, instead of executing the original behavior, another
around advice is run (if any more need to be run), and so on.
Last, all after advice are run in an unspecified order.

Join Point...

Around b

pr
oc

ee
d

Around a

pr
oc

ee
d

...

Before a

Before b

...

After a

After bTime

Figure 1. Execution order of multiple advice for one join
point

An important issue when multiple aspects, or multiple
advice, are present is however their order of execution as
it can significantly impact the behavior of the application.

3 Although we speak of deployment and undeployment of aspects, these
messages are called install: and uninstall, which was how they were origi-
nally named in AspectS [7]

Aspect execution order is one case of interaction between
aspects [3]. A typical example is the interaction between a
timing and a logging aspect, which is as follows: Timing
adds around advice to a number of methods, sending a pro-
ceed message and registering the time it needs to execute.
Logging adds around advice to a number of methods, send-
ing a proceed message and logging it. When both aspects
affect the same method, the situation is similar to the around
advice execution depicted in Figure 1. Timing will or will
not include the time taken for the log operations, depend-
ing on which advice executes first, i.e., whether Around a
is the timing advice and Around b is the logging advice or
vice-versa. The required behavior is clearly a decision that
should be taken when developing the application, and hence
the aspect language should provide for a means to define an
ordering for the execution of advice.

PHANtom has two mechanisms to define the ordering of
advice. It first has a precedence relationship inspired from
AspectJ, which we discuss next. Second it has a fully dy-
namic advice order list that can be manipulated by the advice
themselves, which is discussed afterward.

2.2.1 Deployment Ordering
The first aspect ordering scheme provided by PHANtom
is a refinement of the static aspect precedence declaration
scheme of AspectJ, adapted to a setting with aspect de-
ployment. A precedence declaration determines that an as-
pect, or a set of aspects, is more important than another (set
of) aspect(s). PHANtom implements the global precedence
scheme of AspectJ and adds to it a local precedence scheme.
In Table 2, we give an overview of both precedence schemes,
and we talk about them next.

To declare a global precedence order, the precedence:
message is sent to a PhAspect instance, with as argument
an ordered collection of receiver class patterns (see Sec-
tion 2.1.2). The first element of the collection determines the
most important aspect(s), the second element determines (a)
lesser important aspect(s), and so on.

The group of all declared aspect precedence relationships
should form a partially ordered set of aspects, which allows a
directed acyclic graph of aspect dependencies to be formed.
When a declared precedence does not respect the partial
order, a cycle would be formed in the dependency graph.
At aspect deployment time the graph is therefore verified for
cycles. If any are present, an error is produced and the aspect
is not deployed.

The aspect dependency graph is used at advice execution
time to order the advice execution as in AspectJ, which is
as follows: The order of before advice and around advice
is from more important to less important, i.e., executing
the advice of the most important aspect first. The order of
execution of after advice is however the reverse: from less
important to more important, i.e., executing the advice of
the most important aspect last.

Receiver Message Ordering
aPhAspect precedence: Add precedence declarations to the global order.

aPhPointcut precedence: Add local order to the global order, ignore conflicting global precedences.
aPhPointcut overridePrecedence: Ignore all precedences of the global order, only use the local order.

Table 2. Deployment ordering specification API.

Fine-Grained Deployment Ordering
In addition to declaring a global precedence order, a prece-
dence order with a more fine-grained scope can be declared,
if necessary. To the best of our knowledge, this is the first
time such a refinement has been proposed to the AspectJ
aspect ordering scheme. The finer-grained ordering is per-
formed by sending the precedence: message to a pointcut. As
a result, the precedence specification that is passed as argu-
ment is present in the join points that match the pointcut. In
other words, in those join points the precedence order is the
global order that is extended with the order declared on the
pointcut. The order declared on the pointcut is considered to
be more important than the global order: If joining both or-
ders leads to cycles in the dependency graph, the precedence
declarations of the aspect that cause the cycle are ignored.

Lastly, PHANtom also allows for the precedence of a
pointcut to override the global precedence, by sending the
overridePrecedence: message to a pointcut. This sets the
precedence order for the matched join points to be exclu-
sively the order that is declared in the pointcut. If this order
contains conflicts, an error is produced at aspect deployment
time

2.2.2 Dynamic Ordering
Combining dynamism and power, PHANtom also allows for
aspect ordering to be decided when advice is executing. This
is inspired by the work on Dynamic AspectJ by Assaf and
Noyé [1]. In this work, the authors argue for a more dynamic
approach to the topic of multiple advice execution. They pro-
pose an extension to AspectJ that allows advice execution to
be scheduled dynamically, including the possibility for some
advice execution to be skipped. At runtime, each advice can
obtain a representation of the list of advice that is sched-
uled to be executed at this join point, which is called an As-
pectGroup. Operations on the AspectGroup allow execution
of all advice to be skipped, execution of advice with a cer-
tain name to be skipped, and positioning advice with a given
name at the head of the sequence. By repeatedly using the
latter operation the sequence can then be reordered.

In accordance to the aim of simplicity, the API of PHAN-
tom is conceptually more straightforward and less restrictive
than Dynamic AspectJ, and is shown in Table 3. In PHAN-
tom, a pointcut may expose the advice ordering in the con-
text through the advice keyword. The context can then be
queried for the list of scheduled before, after and around
advice, as well as for the currently executing sequence of
advice. This returns an ordered collection of such advice.

This collection can be manipulated as required by the ad-
vice, and the context can be given a new sequence of sched-
uled advice, setting the execution sequence. When chang-
ing the group of scheduled advice to which this advice be-
longs, it is however ambiguous where in the sequence the ad-
vice execution process should continue. To avoid this, such
a change must be performed by sending the currentAdvice
continueAt: message. This message also indicates at what
index in the sequence is the advice that should be run next,
removing the ambiguity. The other advice setter messages
(beforeAdvice: when used in a before advice, . . .) are silently
ignored.

2.3 Reentrancy Control
A common pitfall in the use of aspects is the appearance
of infinite loops when aspects are added to the application.
Typically what occurs is that the pointcut of an advice cap-
tures the behavior of the advice itself. An example of this is
shown in Figure 2. When the advice executes, its pointcut
matches its own execution. As a result, the advice executes
and its pointcut matches its own execution. Consequently,
the advice executes, and so on.

|asp|
asp := PhAspect new

add:(PhAdvice
pointcut: (PhPointcut

receivers: Transcript class selectors: show:)
advice: [Transcript show: Showing]
type: #before).

asp install.
Transcript show: reentrancy control ; cr.

Figure 2. A potential infinite loop as part of the advice
execution is captured by its own pointcut.

In this section we introduce the reentrancy controls pro-
vided by PHANtom. Based on the concepts of computa-
tional membranes, PHANtom provides a safe default, that
can however be modified by the programmer if required.

2.3.1 Computational Membranes for Reentrancy
Control

A number of proposals have previously been made that aim
to avoid such reentrancy issues. The recent work by Tan-
ter on execution levels for aspect-oriented programming [11]
provides a thorough analysis of the problem, and a solution

Receiver Message Result
aPhContext beforeAdvice, beforeAdvice: Obtain, set sequence of before advice
aPhContext aroundAdvice, aroundAdvice: Obtain, set sequence of around advice
aPhContext afterAdvice, afterAdvice: Obtain, set sequence of after advice
aPhContext currentAdvice Obtain sequence of advice that is currently executing
aPhContext currentAdvice:continueAt: Set currently executing sequence and index of where to continue

Table 3. Dynamic ordering specification API.

that supersedes previous proposals. The latest work of Tan-
ter et al., computational membranes [12], is a generalization
of execution levels that provides more flexibility. PHANtom
uses these computational membranes to provide for reen-
trancy control.

At its core, the work on membranes proposes to deploy
membranes around a given computation, to serve as a scop-
ing mechanism for the join points emitted by that compu-
tation. Membranes are then used to structure execution of
aspects. Membranes can be nested, resulting in a hierarchy
of membranes, and crosscut, when multiple membranes are
deployed around (a part of) the same computation. Figure 3
(taken from [12], with permission) illustrates how mem-
branes can be deployed on a control flow of three compu-
tations X, Y and Z. Membranes m1 and m2 crosscut, as they
both wrap the Y computation.

X

Y Z

X

Y Z

X

Y Z

X

Y Z

A

deploy m1 deploy m2 deploy and bind m3control
flow

m1 m1 m1

m2 m2

m3

Figure 3. Deployment of membranes (taken from [12], with
permission). Membranes m1 resp. m2 wrap computation X
and Y resp. Y and Z. Membrane m3 is bound to m1 causing
join points from the computation in m1 to be visible to the
aspect A.

Membranes scope the observation of join points by con-
trolling the propagation of join points of the computation
on which they are deployed. For an aspect to observe a join
point, it needs to register itself in a membrane. In Figure 3,
the aspect A is registered in the membrane m3. All the join
points that are observed by that membrane are visible to the
aspect, i.e., can be matched by its pointcuts. To observe a
join point, a membrane however must first be bound to a
membrane that generates join points (which may be itself).
In the example, the membrane m3 is bound to membrane
m1. As a result, the join points generated in membrane m1
‘flow’ to the membrane m3 and hence are visible to the as-
pect A. Note that join points that occur in the computation Z
will not be seen by the aspect A, as the membrane m1 does
not capture this computation.

Note that membranes are more powerful than what is
presented here, and PHANtom only implements the subset
of the capabilities of membranes that allows for topological
scoping of join points. For example, the membranes proposal
posits that membranes may filter the incoming and outgoing
join points. For more information we refer to the membranes
publication [12].

2.3.2 Addressing Reentrancy Issues
Following the goal of simplicity, PHANtom provides straight-
forward behavior: it by default avoids the typical reentrancy
issues we identified above. Recall that in Figure 2 the advice
sends the show: message to the Transcript, which is captured
by its own pointcut4. Without reentrancy control, it hence
leads to an infinite loop. In PHANtom, the code however
does not loop and solely prints Showing reentrancy control
on the transcript. This is achieved by letting the computation
that is intercepted by the aspect (i.e., Transcript show: ’reen-
trancy control’; cr.) be contained by its own membrane, and
the computation of the aspect be a separate membrane in
which the aspect is registered. The aspects’ membrane is
then bound to the computations’ membrane. Join points of
the computations’ membrane flow to the aspects’ membrane,
but join points of the aspects’ membrane do not flow to it-
self. Hence the aspect does not capture its own computation
and thus does not loop.

2.3.3 User-Specified Membrane Topologies
PHANtom provides the programmer the power to define a
custom topology of membranes and their binding relations,
which aspects are registered in what membranes, and on
what computation the membranes are deployed by means of
pointcuts. The API of membranes is shown in Table 4. It al-
lows the programmer to straightforwardly specify situations
where join points emitted by aspects need to be visible to
(other) aspects, in a structured manner.

The membranes paper [12] provides a number of ex-
amples of how such advanced topologies can be achieved
through the use of membranes. We repeat here the example
used to illustrate how a directed acyclic graph of membranes
and their binding can be constructed. Suppose that we have
a browser computation that is complemented by a cache as-

4 In Pharo, Transcript is actually an instance of a different class (that
depends on the version of Pharo). Hence for the code to work the argument
to receivers: needs to be changed to Transcript class asString

Receiver Message Result
aPhMembrane advise:, unAdvise: Binds, resp. unbinds the argument membrane to the receiver.
aPhMembrane registerAspect:, unregisterAspect: Register, resp. unregister an aspect instance in the receiver.
aPhMembrane pointcut: Pointcut argument defines computation around which the

receiver will be deployed.
aPhMembrane install, uninstall Deploy, resp. undeploy the receiver.

Table 4. The Membranes API

pect and a quota aspect. The cache aspect intercepts URL re-
quests by the browser to cache the retrieved pages locally on
disk. The quota aspect should verify that disk operations by
the browser (e.g.saving a page to disk) as well as the cache
do not exceed the allowed disk quota. The implementation
of this topology is shown below:

|browserMem cacheMem quotaMem|
” assuming browser class, cache and quota aspects ”

browserMem := PhMembrane new pointcut:
(PhPointcut receivers: Browser selectors: #()).

browserMem install.

cacheMem := PhMembrane new.
cache registerOn: cacheMem.
cacheMem advise: browserMem.

quotaMem := PhMembrane new.
quotaMem advise: browserMem; advise: cacheMem.
quota registerOn: quotaMem.

In this code we see three groups of statements. The first
group creates a membrane, stating the computation around
which it will be deployed using a pointcut, and deploys it. In
the second group, the cache aspect is registered in a second
membrane and this cache membrane is bound to the browser
membrane. By registering an aspect in a membrane, the
membrane is automatically deployed on the aspect, i.e.,the
join points of the aspect are captured by the membrane. This
will enable the quota aspect to match on join points of the
cache aspect. In the third group, the quota aspect is registered
in its own membrane as well, and the quota membrane is
bound to both the browser and cache membrane.

As an illustration of the power and ease of use of mem-
branes, note that if the quota aspect should not need to inter-
cept actions of the browser, the binding of the quota mem-
brane to the base membrane should merely be omitted.

3. Implementing PHANtom
In this section we give a brief overview of the more salient
points of the current implementation of the aspect weaver of
PHANtom.

Note that while PHANtom is designed with optimization
and compilation in mind, currently the implementation is
still interpreted. This is because our first priority was to
work on establishing the language semantics. Now that these

have been stabilized, our next step will be to perform more
optimizations and to compile aspects.

3.1 Use of Method Wrappers
As in AspectS, PHANtom makes use of method wrap-
pers [2] to capture join points. This is done by placing
method wrappers around methods that are join point shad-
ows of pointcuts used in the aspects. In this section we detail
our use of method wrappers.

Open
Close

File

DOSFile
Open

MacFile

Close
HFSFile

Figure 4. An example File hierarchy.

PHANtom places a method wrapper around join point
shadows where advice needs to execute, i.e., methods that
are identified in a pointcut. In the presence of inherited
and overridden methods, this relationship can not always be
obvious as some behavior can be defined locally and some
not. Moreover subclasses of an affected class may not be
matched by the pointcut and therefore their behavior should
be unchanged. To clarify, we present here the relationship
between pointcuts and the installed method wrappers by
means of an example. Suppose we have a class hierarchy
as in Figure 4, we now show where two different pointcuts
on this hierarchy cause method wrappers to be installed:

PhPointcut receivers: MacFile selectors:#(open close)

As open is defined in MacFile, a method wrapper is in-
stalled on this method. However, instances of HFSfile in-
herit the behavior of open while the pointcut does not match
them, and hence no advice should execute. To achieve this,
the method wrapper first establishes the class of the receiver.
If it is different from MacFile, advice execution is skipped.

The close method is inherited from File but may not be
modified there, as the pointcut does not identify that class.
Hence the method in File, more concretely the instance of
CompiledMethod that is in the method dictionary of File, is
copied. This copy is wrapped in a method wrapper and added
to the method dictionary of MacFile.

PhPointcut receivers: MacFile+ selectors:#(open close)

As open is defined in MacFile, a method wrapper is
installed on this method. As above, the close method is
copied and the wrapped copy is installed in MacFile. In
HFSFile, a method wrapper is installed on the close method,
and the open method is copied from MacFile and wrapped.
The latter is necessary to differentiate between an execution
of open in HFSFile versus one in MacFile. This is needed as
a different sequence of advice may need to execute at both
points, so we need to be able to differentiate between both.

3.2 Installing and uninstalling aspects
Deploying or installing an aspect is a four-step process,
which is as follows:

Installing Class Modifiers. First, the weaver verifies that
the class modifiers of the aspect do not redefine existing
instance variables or fields. If not, the class is recompiled
with new instance variables, if needed, and the new methods
are compiled and added to the class.

Membrane Creation. If the aspect is not registered in a
membrane, a new membrane is created on the computation
identified by the pointcuts used by the aspect. The aspect is
registered in the membrane, and the membrane is deployed.

Join Point Shadow Resolution. The membrane of the as-
pect iterates over the advice of the aspect, collecting the
pointcuts that are used there. It then determines the join point
shadows for those pointcuts.

Method Wrapper Installation. In each join point shadow
a method wrapper instance is installed that is parameterized
with the advice collection that executes at the join points of
that shadow.

To uninstall an aspect, first the method wrappers are unin-
stalled, then the membrane is undeployed and lastly methods
and instance variables added by class modifiers are removed.
To ensure that there are no unforeseen interactions with as-
pects that have not been removed, all aspects are uninstalled,
and the aspects that should not have been uninstalled are in-
stalled again. We are aware that this process is clearly far
from optimal, and the uninstall process is therefore a prime
candidate for optimization in future work.

3.3 Support for Dynamism
In addition to providing dynamic AOP, i.e., the ability to in-
stall and uninstall aspects at runtime, PHANtom must also
provide support for the dynamic nature of Smalltalk itself.

When classes or methods in the system change, this may af-
fect the aspects if their pointcuts match (or no longer match)
on these changed classes or methods. In the current imple-
mentation changes to the system are detected and treated
correctly. As we show below, the implementation of this sup-
port for dynamism is however primitive. It is therefore also
a prime candidate for optimization in future work.

Method Implementation Change. When a method that is
a join point shadow is recompiled, in the method wrapper the
old implementation is replaced by the new implementation.

Adding or Removing of Methods. If a method that is a
join point shadow is removed from the system, its wrapper
is merely discarded. When adding methods all aspects are
uninstalled and reinstalled to ensure that the new methods
are captured by membranes and aspects if they match the
respective pointcuts.

Changes in the Class Structure or Hierarchy. To ensure
consistency of join point shadows and of the computation on
which membranes are deployed, all aspects are uninstalled
and then reinstalled.

4. Related Work
Beyond being the first work on AOP, AspectJ [8] is the ref-
erence work for aspect languages. AspectJ is an AOP exten-
sion to Java, allowing aspects to be woven at compile time
or at class loading time, hence it has no dynamic features.
In AspectJ, an aspect can be seen as a class that cannot be
instantiated and which may also contain pointcuts and ad-
vice. Pointcut are defined in a specific DSL that allows for
patterns to specify class and method name, as well as the
type of pointcut: method call, object instantiation, field ac-
cess, and so on. Furthermore, pointcuts have access to the
context at runtime, which may be used as part of the predi-
cate, and can be exposed to advice. Advice specifications are
similar to methods, named before, after or around, indicat-
ing before, after or around advice. Context exposed by the
pointcut is made available as arguments to the advice and
the pointcut identification is placed before the method body.
Lastly, inter-type declarations are field or method declara-
tions whose signature is prepended by the target type name
and a dot. AspectJ is a language with an arguably large fea-
ture set, is still being developed and is in use by the industry.
Due to its significant feature set, a more complete discussion
of the features of AspectJ is outside of the scope of this paper

AspectS [7] is a seminal work on aspect-oriented pro-
gramming, presenting an AOP extension to Squeak Smalltalk.
It is the first aspect language to feature dynamic AOP,
i.e., the addition and removal of aspects at runtime. AspectS
has no dedicated pointcut language, instead relying on the
use of metaprogramming to specify the join point shadows,
and what are termed advice qualifiers to perform runtime
testing of the join points. The behavior of advice is given by
using a block, and the context is passed to the block as mul-

tiple arguments. The implementation of AspectS combines
method wrappers [2] with metaprogramming. The former
are used to intercept computation at join point shadows,
while the latter is used in various places, e.g. to determine
join point shadows or to obtain the activation context of the
message sender. AspectS also provides various extensions of
the Squeak browsers to support, e.g. navigation between join
point shadows and aspects, and vice-versa. AspectS however
does not provide explicit support for advice ordering, nor ex-
plicit support for controlling reentrancy. Also, AspectS is not
completely dynamic, as changes to classes or methods that
affect the pointcuts of an aspect are not taken into account if
the aspect is already deployed.

Eos-U [9] is an aspect language for C#, in the style of
AspectJ, that unifies aspects and objects into a more sym-
metrical view of AOP. Initially, in AspectJ, aspects were
seen as entities fundamentally different from normal classes.
In AspectJ, Aspects could not be (and still cannot be) in-
stantiated, and join points in the execution of advice could
not be captured by other aspects. Eos-U introduced the con-
cept of classpects, which remove these separations between
classes and aspects. Classpects can be instantiated and their
behavior i.e., their advice, is implemented as regular meth-
ods, whose join points may be seen by other classpects.
Classpects may contain AspectJ-like pointcut specifications
that now also are responsible for identifying the associated
advice and its type (before, after or around). The latter how-
ever restricts the reuse possibilities of pointcuts and com-
plicates logical combinations of pointcuts. This is why in
PHANtom the advice construct is still present and represents
the binding between a pointcuts and the behavior to be exe-
cuted.

PHANtom also builds on the work by Assaf and Noyé
on Dynamic AspectJ, which has been discussed in Sec-
tion 2.2.2, and work by Tanter et al., which has been talked
about in Section 2.3. We do not further go in detail on this
work here but instead refer to the respective sections.

5. Conclusions and Future Work
We have introduced PHANtom, a modern aspect language
for Pharo Smalltalk. PHANtom is an aspect language in
the spirit of Smalltalk, combining dynamism, simplicity and
power. PHANtom is a modern aspect language as it is in-
spired by features of existing aspect languages, integrates
recent research results and is created with optimization in
mind. PHANtom is built, on the one hand, as a base for ex-
perimentation of aspect-oriented programming in Smalltalk,
and on the other hand, intends to provide a modern aspect
language to the Smalltalk programmer.

In this paper, we first gave an overview of PHANtom,
starting with the design considerations and detailing what
features are taken from which previous work. We then de-
scribed how pointcuts, advice, inter-type declarations and
aspects are created, and how the latter are deployed. We

followed this with a discussion of the more advanced fea-
tures of PHANtom: aspect ordering at deployment time and
at runtime, and management of reentrancy using computa-
tional membranes.

After the language introduction, we briefly touched on
the more noteworthy points of the current implementation.
While PHANtom is designed with optimization and compi-
lation in mind the current implementation is an interpreter
that makes used of method wrappers. We first described how
we use method wrappers to intercept the computation where
needed. We then gave an overview of the aspect deployment
and undeployment mechanism, and ended with describing
how PHANtom supports the dynamism of Smalltalk.

There are many avenues of future work. Firstly, the exist-
ing implementation can be optimized, as mentioned in Sec-
tions 3.2 and 3.3. Complementary to this, the work on com-
piling PHANtom is an important task we plan to undertake.
Considering the feature set of the language, we want to add
dynamic checks to the pointcuts, in the spirit of the if fea-
ture of AspectJ pointcuts. Also we would like to develop
a specific syntax for PHANtom, to be able to program as-
pects in a more concise manner. Lastly, as tool support for
PHANtom is currently lacking, we are considering adding
tool support that allows to see the impact of aspects in the
code browser, or even use specific aspect visualizations such
as AspectMaps [5].

References
[1] A. Assaf and J. Noyé. Dynamic aspectj. In Proceedings of the

2008 symposium on Dynamic languages, DLS ’08, pages 8:1–
8:12, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-
270-2. URL http://doi.acm.org/10.1145/1408681.
1408689.

[2] J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers to
the rescue. In E. Jul, editor, ECOOP’98 - Object-Oriented
Programming, volume 1445 of Lecture Notes in Computer
Science, pages 396–417. Springer Berlin / Heidelberg, 1998.
URL http://dx.doi.org/10.1007/BFb0054101.

[3] R. Chitchyan, J. Fabry, S. Katz, and A. Rensink. Editorial for
special section on dependencies and interactions with aspects.
5490:133–134, 2009.

[4] T. Cleenewerck, J. Fabry, A.-F. Lemeur, J. Noyé, and É. Tan-
ter, editors. Proceedings of the 4th workshop on Domain-
Specific Aspect Languages, Charlottesville, VA, USA, Mar.
2009.

[5] J. Fabry, A. Kellens, and S. Ducasse. Aspectmaps: A scalable
visualization of join point shadows. In Proceedings of 19th
IEEE International Conference on Program Comprehension
(ICPC2011), Jul 2011. To appear.

[6] E. Hilsdale and J. Hugunin. Advice weaving in aspectj. In
Proceedings of the 3rd international conference on Aspect-
oriented software development, AOSD ’04, pages 26–35, New
York, NY, USA, 2004. ACM. ISBN 1-58113-842-3. URL
http://doi.acm.org/10.1145/976270.976276.

[7] R. Hirschfeld. Aspects - aspect-oriented programming with
squeak. In M. Aksit, M. Mezini, and R. Unland, edi-
tors, Objects, Components, Architectures, Services, and Ap-
plications for a Networked World, volume 2591 of Lecture
Notes in Computer Science, pages 216–232. Springer Berlin
/ Heidelberg, 2003. URL http://dx.doi.org/10.1007/
3-540-36557-5_17.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. An overview of aspectj. In J. Knud-
sen, editor, ECOOP 2001 - Object-Oriented Programming,
volume 2072 of Lecture Notes in Computer Science, pages
327–354. Springer Berlin / Heidelberg, 2001. URL http:
//dx.doi.org/10.1007/3-540-45337-7_18.

[9] H. Rajan and K. Sullivan. Classpects: unifying aspect- and
object-oriented language design. In Software Engineering,
2005. ICSE 2005. Proceedings. 27th International Conference
on, pages 59 – 68, may 2005. URL http://dx.doi.org/
10.1109/ICSE.2005.1553548.

[10] L. Renggli, S. Ducasse, T. Gı̂rba, and O. Nierstrasz. Practi-
cal dynamic grammars for dynamic languages. In 4th Work-
shop on Dynamic Languages and Applications (DYLA 2010),
Malaga, Spain, June 2010.

[11] E. Tanter. Execution levels for aspect-oriented programming.
In Proceedings of the 9th International Conference on Aspect-
Oriented Software Development, AOSD ’10, pages 37–48,
New York, NY, USA, 2010. ACM. ISBN 978-1-60558-958-9.
URL http://doi.acm.org/10.1145/1739230.1739236.

[12] É. Tanter, N. Tabareau, and R. Douence. Exploring mem-
branes for controlling aspects. Technical Report TR/DCC-
2011-8, University of Chile, June 2011.

Talents: Dynamically Composable Units of Reuse

Jorge Ressia, Tudor Gı̂rba, Oscar Nierstrasz, Fabrizio Perin, Lukas Renggli
Software Composition Group, University of Bern, Switzerland

http://scg.unibe.ch/

Abstract
Reuse in object-oriented languages typically focuses on in-
heritance. Numerous techniques have been developed to pro-
vide finer-grained reuse of methods, such as flavors, mixins
and traits. These techniques, however, only deal with reuse
at the level of classes.

Class-based reuse is inherently static. Increasing use
of reflection and meta-programming techniques in real
world applications underline the need for more dynamic
approaches. New approaches have shifted to object-specific
reuse. However, these techniques fail to provide a complete
solution to the composition issues arising during reuse.

We propose a new approach that deals with reuse at the
object level and that supports behavioral composition. We
introduce a new abstraction called a talent which models
features that are shared between objects of different class
hierarchies. Talents provide a composition mechanism that
is as flexible as that of traits but which is dynamic.

Categories and Subject Descriptors D.1.5 [Programming
Techniques]: Object-oriented Programming; D.3.3 [Lan-
guage Constructs and Features]: Classes and Objects

General Terms Design, Languages

Keywords Reflection, Traits, Mixins, Object-specific be-
havior, Object adaption, Smalltalk

1. Introduction
Classes in object-oriented languages define the behavior of
their instances. Inheritance is the principle mechanism for
sharing common features between classes. Single inheri-
tance is not expressive enough to model common features
shared by classes in a complex hierarchy. Due to this sev-
eral forms of multiple inheritance have been proposed [3,
21, 31, 39, 43]. However, multiple inheritance introduces

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright © ACM [to be supplied]. . . $10.00

problems that are difficult to resolve [12, 44]. One can argue
that these problems arise due to the conflict between the two
separate roles of a class, namely that of serving as a factory
for instances, as well as serving as a repository for shared
behaviour for all instances. As a consequence, finer-grained
reuse mechanisms, such as flavors [32] and mixins [5], were
introduced to compose classes from various features.

Although mixins succeed in offering a separate mecha-
nism for reuse they must be composed linearly, thus intro-
ducing new difficulties in resolving conflicts at composition
time. Traits [14, 40] overcome some of these limitations by
eliminating the need for linear ordering. Instead dedicated
operators are used to resolve conflicts. Nevertheless, both
mixins and traits are inherently static, since they can only be
used to define new classes.

Ruby [28] relaxes this limitation by allowing mixins to
be applied to individual objects. Object-specific mixins how-
ever still suffer from the same compositional limitations of
class-based mixins, since they must still be applied linearly
to resolve conflicts.

In this paper we introduce talents, object-specific units
of reuse which model features that an object can acquire at
run-time. Like a trait, a talent represents a set of methods
that constitute part of the behavior of an object. Unlike traits,
talents can be acquired (or lost) dynamically. When a talent
is applied to an object, no other instance of the object’s
class are affected. Talents may be composed of other talents,
however, as with traits, the composition order is irrelevant.
Conflicts must be explicitly resolved.

Like traits, talents can be flattened, either by incorporat-
ing the talent into an existing class, or by introducing a new
class with the new methods. However, flattening is purely
static and results in the loss of the dynamic description of
the talent on the object. Flattening is not mandatory, on the
contrary, it is just a convenience feature which shows how
traits are a subset of talents.

The contributions of this paper are:

• We identify static problems associated with multiple in-
heritance, mixins and traits.

• We introduce talents, an object-specific behavior com-
position model that removes the limitations of static ap-
proaches.

• We describe a Smalltalk prototype of our approach.
• We describe two flattening techniques which merge the

behavior adaptations into the original class hierarchy or
into a new class.

Outline. In Section 2 we motivate the problem. Section 3
explains the talent approach, its composition operations and
a solution to the motivating problem. In Section 4 we present
the internal implementation of our solution in the context of
Smalltalk. In Section 5 we discuss related work. Section 6
discusses about features of talents such as state sharing,
scoping and flattening. In Section 7 we present examples to
illustrate the various uses of talents. Section 8 summarizes
the paper and discusses future work.

2. Motivating Example
Moose is a platform for software and data analysis that pro-
vides facilities to model, query, visualize and interact with
data [19, 33]. Moose represents the source code in a model
described by FAMIX, a language-independent meta-model
[45]. The model of a given software system consists of en-
tities representing various software artifacts such as meth-
ods (through instances of FAMIXMethod) or classes (through
instances of FAMIXClass).

Each type of entity offers a set of dedicated analysis
actions. For example, a FAMIXClass offers the possibility of
visualizing its internal structure, and a FAMIXMethod offers the
ability to browse its source code.

Moose can model applications written in different pro-
gramming languages, including Smalltalk, Java, and C++.
These models are built with the language independent
FAMIX meta-model. However, each language has its own
particularities which are introduced as methods in the differ-
ent entities of the meta-model. There are different extensions
which model these particularities for each language. For ex-
ample, the Java extension adds the method namespace to the
FAMIXClass, while the Smalltalk extension adds the method
isExtended. Smalltalk however does not support namespaces,
and Java does not support extended classes. Additionally, to
identify test classes Java and Smalltalk require different im-
plementations of the method isTestClass in FAMIXClass.

Another problem with the extensions for particular lan-
guages is that the user has to deal with classes that have
far more methods than the model instances actually support.
Dealing with unused code reduces the developer productiv-
ity and it is error prone.

A possible solution is to create subclasses for each sup-
ported language. However, there are some situation in which
the model requires a combination of extensions: Moose JEE
[35, 36] — a Moose extension to analyze Java Enterprise
Applications (JEAs) — requires a combination of Java and
Enterprise Application specific extensions. This leads to an
impractical explosion of the number of subclasses. More-
over, possible combinations are hard to predict in advance.

Multiple inheritance can be used to compose the different
behaviors a particular Moose entity requires. However, the
diamond problem makes it difficult to handle the situation
where two languages want to add a method of the same
name. Mixins address the composition problem by applying
a composition order, this however might lead to fragile code
and subtle bugs. Traits offer a solution that is neutral to
composition order, but traits neither solve the problem of the
explosion in the number of classes to be defined, nor do they
address the problem of dynamically selecting the behavior.
Traits are composed statically into classes before instances
can benefit from them.

We need a mechanism capable of dynamically composing
various behaviors for different Moose entities. We should be
able to add, remove, and change methods. This new Moose
entity definition should not interfere with the behavior of
other entities in other models used concurrently. We would
like to be able to have coexisting models of different lan-
guages, formed by Moose entities with specialized behavior.

3. Talents in a Nutshell
In this section we present our approach. We propose com-
posable units of behavior for objects, called talents. These
abstractions solve the issues present in other approaches.

The prototype of talents1 and the examples presented in
this paper are implemented in Pharo Smalltalk2, an open-
source Smalltalk [20] implementation.

3.1 Defining Talents
A talent specifies a set of methods which may be added to,
or removed from, the behavior of an object. Although the
methods of a talent may directly access the state of an object,
it is recommended to use accessor methods instead.

We will illustrate the use of talents with the Moose exten-
sion example introduced in the previous section.

A talent is an object that specifies methods that can be
added to an existing object. A talent can be assigned to any
object in the system to add or remove behavior.

1 aTalent := Talent new.
2 aTalent
3 defineMethod: #isTestClass
4 do: '^ self inheritsFromClassNamed: #TestCase'.
5 aClass := FAMIXClass new.
6 aClass acquire: aTalent.

We can observe that first a generic talent is instantiated
and then a method is defined. The method isTestClass is
used to test if a class inherits from TestCase. In lines 5–
6 we can see that a FAMIX class is instantiated acquiring
the previous talent. When the method acquire: is called,
the object — in this case the FAMIX class — is adapted.
Only this FAMIXClass instance is affected, no other instance

1 http://scg.unibe.ch/research/talents/
2 http://www.pharo-project.org/

is modified by the talent. No adaptation will be triggered if
an object tries to acquire the same talent several times.

Talents can also remove methods from the object that
acquires them.

1 aTalent := Talent new.
2 aTalent excludeMethod: #clientClasses.
3 aClass := FAMIXClass new.
4 aClass acquire: aTalent.

In this case the existing method clientClasses is removed
from this particular class instance. Sending this message
will now trigger the standard doesNotUnderstand: error of
Smalltalk.

3.2 Composing Objects from Talents
Talent composition order is irrelevant, so conflicting tal-
ent methods must be explicitly disambiguated. Contrary to
traits, the talent definition of a method takes precedence if
the object acquiring the talent already has the same method.
Once an object is bound to a talent then it is clear that this
object needs to specialize its behavior. This precedence can
be overridden if it is explicitly stated during the composition
by removing the definition of the methods from the talent.

In the next example we will compose a group with two
talents. One expresses the fact that a Java class is in a names-
pace, the other that a JEE class is a test class.

1 javaClassTalent := Talent new.
2 javaClassTalent
3 defineMethod: #namespace
4 do: '^ self owningScope'.
5 jeeClassTalent := Talent new.
6 jeeClassTalent
7 defineMethod: #isTestClass
8 do: '^ self methods anySatisfy: [:each | each

isTestMethod]'.
9 aClass := FAMIXClass new.

10 aClass acquire: javaClassTalent , jeeClassTalent.

In line 10 we can observe that the composition of talents
is achieved by sending the comma message (,). The com-
posed talents will allow the FAMIX class instance to dynam-
ically reuse the behavior expressed in both talents.

3.3 Conflict Resolution
A conflict arises if and only if two talents being composed
provide different implementations for the same method.
Conflicting talents cannot be composed, so the conflict has
to be resolved to enable the composition.

To gain access to the different implementations of con-
flicting methods, talents support an alias operation. An alias
makes a conflicting talent method available by using another
name.

Talent composition also supports exclusion, which allows
one to avoid a conflict before it occurs. The composition
clause allows the user to exclude methods from a talent when
it is composed. This suppresses these methods and allows
the composite entity to acquire the otherwise conflicting
implementation provided by another talent.

We would like models originating from JEE applications
to support both Java and JEE extensions. Composing these
two talents however generates a conflict for the methods
isTestClass for a FAMIX class entity. The next example
produces a conflict on line 10 since both talents define a
different implementation of the isTestClass method.

1 javaClassTalent := Talent new.
2 javaClassTalent
3 defineMethod: #isTestClass
4 do: '^ self methods anySatisfy: [:m | m

isAnnotatedWith: #Test]'.
5 jeeClassTalent := Talent new.
6 jeeClassTalent
7 defineMethod: #isTestClass
8 do: '^ self inheritsFrom: #TestCase'.
9 aClass := FAMIXClass new.

10 aClass acquire: javaClassTalent , jeeClassTalent.

There are different ways to resolve this situation. The first
is to define aliases, like in traits, to avoid the name collision:

10 aClass acquire: javaClassTalent , (jeeClassTalent @ {
#isTestClass -> #isJEETestClass}).

When the talent is acquired the method isJEETestClass is
installed instead of isTestClass, thus avoiding the conflict.
Any other method or another talent can then make use of
this aliasing.

Another option is to remove those methods that do not
make sense for the specific object being adapted.

10 aClass acquire: javaClassTalent , (jeeClassTalent -
#isTestClass).

By removing the definition of the JEE class talent the Java
class talent method is correctly composed.

Each FAMIX extension can be defined as a set of talents,
each for a single entity, i.e., class, method, annotation, etc.
For example, we have the Java class talent which models
the methods required by the Java extension to FAMIX class
entity. We also have a Smalltalk class talent as well as a JEE
talent that model further extensions.

4. Implementation
In this section we describe how talents are implemented.

4.1 Bifröst
Talents are built on top of the Bifröst reflection frame-
work [38]. Bifröst offers fine-grained unanticipated dynamic
structural and behavioral reflection through meta-objects.
Instead of providing reflective capabilities as an external
mechanism we integrate them deeply into the environment.
Explicit meta-objects allow us to provide a range of reflec-
tive features and thereby evolve both application models and
the host language at run-time. Meta-objects provide a sound
basis for building different coexisting meta-level architec-
tures by bringing traditional object-oriented techniques to
the meta-level.

In recent years researchers have worked on the idea of
applying traditional object-oriented techniques to the meta-
level while attempting to solve various practical problems
motivated by applications [29]. These approaches, however,
offer specialized solutions arising from the perspective of
particular use cases.

The Bifröst model solves the main problems of previ-
ous approaches while providing the main reflection require-
ments.

Partial Reflection. Bifröst allows meta-objects to be bound
to any object in the system thus reflecting selected parts
of an application.

Selective Reification. When and where a particular reifica-
tion should be reified is managed by the different meta-
objects.

Unanticipated Changes. At any point in time a meta-object
can be bound to any object thus supporting unanticipated
changes.

Meta-level Composition. Composable meta-objects provide
the mean for bringing together different adaptations.

Runtime Integration. Bifröst’s reflective model lives en-
tirely in the language model, so there is no VM modi-
fication or low level adaptation required.

4.2 Talents
Figure 1 shows the normal message send of isTestClass to
an instance of FAMIXClass. The method lookup starts on the
class finding the definition of the method and then executing
it for the message receiver.

However, if we would like to factor the FAMIXClass JEE
behavior out we can define a talent that models this. Each
talent is modeled with a structural meta-object. A structural
meta-object abstraction provides the means to define meta-
objects like classes and prototypes. New structural abstrac-
tions can be defined to fulfill some specific requirement.
These meta-object responsibilities are: adding and remov-
ing methods, and adding and removing state to an object. A
composed meta-object is used to model composed talents.
The specific behavior for defining and removing methods
is delegated to the addition and removal of behavior in the
structural meta-object.

In Figure 2 we can observe the object diagram for a
FAMIX class which has acquired a talent that models JEE
behavior. The method lookup starts in the class of the re-
ceiver. Originally, the FAMIXClass class did not define a
method isTestClass, however, the application of the talent
defined this method. This method is responsible for delegat-
ing the execution of the message to the receiver’s talent. If
the object does not have a talent, the normal method lookup
is executed, thus talents do not affect other instances’ be-
havior of the class. In this case, aFAMIXClass has a talent that
defines the method isTestClass, which is executed for the
message receiver.

5. Related Work
In this section we compare talents to other approaches to
share behavior.

Mixins
Flavors [32] was the first attempt to address the problem
of reuse across a class hierarchy. Flavors are small, incom-
plete implementations of classes, that can be “mixed in” at
arbitrary places in the class hierarchy. More sophisticated
notions of mixins were subsequently developed by Bracha
and Cook [5], Mens and van Limberghen [30], Flatt, Kr-
ishnamurthi and Felleisen [16], and Ancona, Lagorio and
Zucca [1].

Mixins present drawbacks when dealing with composi-
tion. Mixins use single inheritance for composing features
and extending classes. Mixins have to be composed linearly
thus limiting the ability to define the glue code necessary to
avoid conflicts. However, although this inheritance operator
is well-suited for deriving new classes from existing ones, it
is not appropriate for composing reusable building blocks.

Bracha developed Jigsaw [4], a modularity framework
which defines module composition operators merge, over-
ride, copy as and restrict. These operators inspired the sum,
override, alias and exclusion operators on traits. Jigsaw mod-
els a complete framework for module manipulation provid-
ing namespaces, declared types and requirements, full re-
naming, and semantically meaningful nesting.

Ruby [28] introduced mixins as a building block of
reusability, called modules. Moreover, modules can be ap-
plied to specific objects without modifying other instances of
the class. However, object-specific modules suffer from the
same composition limitation as modules applied to classes:
they have to be applied linearly. Aliasing of methods is
possible for avoiding name collisions, as well as remov-
ing method in the target object. However, objects or classes
methods cannot be removed if they are not already imple-
mented. This follows the concept of linearization of mixins.
Talents can be applied without an order. Moreover, a talent
composition delivers a new talent that can be reused and ap-
plied to other objects. Filters in Ruby provide a mechanism
for composing behavior into preexisting methods. However,
they do not provide support for defining how modules de-
fined methods should be composed for a single object.

CLOS
CLOS [10] is an object-oriented extension of Lisp. Multi-
ple inheritance in CLOS [25, 34] imposes a linear order on
the superclasses. This linearization often leads to unexpected
behavior because it is not always clear how a complex mul-
tiple inheritance hierarchy should be linearized [15]. CLOS
also provides a mechanism for modifying the behavior of
specific instances by changing the class of an instance using
the generic function change-class. However, these modifica-
tions do not provide any composition mechanisms, render-

aFAMIXClass
 isTestClass

Key
instance-of
message send
lookup

FAMIXEntity

FAMIXType

isTestClass
FAMIXClass

aFAMIXClass

1

2

3

self inheritsFrom: 'TestCase'

MooseEntity

...

Figure 1. Default message send and method look up resolution.

aFAMIXClass
 isTestClass

FAMIXClass

aFAMIXClass

1

2

4

aFAMIXClass
 inheritsFrom: 'TestCase'

aJeeClassTalent

Key
instance-of
message send
lookup
acquire

3
aJeeClassTalent
 talent isTestClass

FAMIXEntity

FAMIXType

MooseEntity

...

Figure 2. Talent modeling the Moose FAMIX class behavior for the method isTestClass.

ing this technique dependent on custom code provided by
the user.

Traits
Traits [14, 40] overcome the limitations of previous ap-
proaches. A trait is a set of methods that can be reused by
different classes. The main advantage of traits is that their
composition does not depend on a linear ordering. Traits are
composed using a set of operators — symmetric combina-
tion, exclusion, and aliasing — allowing a fair amount of
composition flexibility. Traits are purely static since their

semantics specify that traits can always be “flattened” to
an equivalent class hierarchy without traits, but possibly
with duplicated code. As a consequence traits can neither
be added nor removed at run-time. Moreover, traits were not
conceived to model object-specific behavior reuse.

Smith and Drossopoulou [41] proposed a mechanism for
applying traits at runtime in the context of Java. However,
only pre-defined behavior defined in a trait can be added at
runtime. It is not possible to define and add new behavior at
runtime.

Object Extensions
Self [46] is a prototype-based language which follows the
concepts introduced by Lieberman [26]. In Self there is no
notion of class; each object conceptually defines its own for-
mat, methods, and inheritance relations. Objects are derived
from other objects by cloning and modification. Objects can
have one or more prototypes, and any object can be the pro-
totype of any other object. If the method for a message send
is not found in the receiving object then it is delegated to the
parent of that object. In addition, Self also has the notion of
trait objects that serve as repositories for sharing behavior
and state among multiple objects. One or more trait objects
can be dynamically selected as the parent(s) of any object.
Selector lookups unresolved in the child are passed to the
parents; it is an error for a selector to be found in more than
one parent. Self traits do not provide a mechanism to fine
tune the method composition. Let us assume that two objects
are dynamically defined as parents of an object. If the both
parents object define the same method there is not a simple
way of managing the conflict.

Object extension [11, 18] provides a mechanism for self-
inflicted object changes. Since there is no template serving
as the object’s class, only the object’s methods can access the
newly introduced method or data members. Ghelli et al. [18]
suggested a calculus in which conflicting changes cannot
occur, by letting the same object assume different roles in
different contexts.

Drossopoulou proposed Fickle [13], a language for dy-
namic object re-classification. Re-classification changes at
run-time the class membership of an object while retaining
its identity. This approach proposes language features for ob-
ject re-classification to extend an imperative, typed, class-
based, object-oriented language. Even though objects may
be re-classified across classes with different members, they
will never attempt to access non-existing members.

Cohen and Gil introduced the concept of object evolu-
tion [7]. This approach proposes three variants of evolu-
tion, relying on inheritance, mixins and shakeins [37]. The
authors introduce the notion of evolvers, a mechanism for
maintaining class invariants in the course of reclassifica-
tion [13]. This approach is oriented towards dynamic reuse
in languages with types. Shakeins provide a type-free ab-
straction, however, there are no composition operators to aid
the developer in solving more complex scenarios.

Bracha et al. [6] proposed a new implementation of
nested classes for managing modularity in Newspeak. New-
speak is class-based language with virtual classes. Class ref-
erences are dynamically determined at runtime; all names
in Newspeak are method invocations thus all classes are
virtual. Nested classes were first introduced in Beta [27].
Classes declarations can be nested to an arbitrarily depth.
Since all references to names are treated as method invo-
cations any object member declaration can be overridden.
The references in an object to nested classes are going to be

solved when these classes are late bound to the classes defi-
nition in the active module the object it is in. Talents model a
similar abstraction to modules, for dynamically composing
the behavior of objects. However, Newspeak modules do not
provide composition operators similar to talents. Composed
talents can remove, alias, or override method definitions.
Removing method definitions is not a feature provided by
Newspeak modules. In Newspeak composition would be
done in the module or in the nested classes explicitly.

Subjective Programming
Subjective behavior is essential for applications that must
adapt their behavior to changing circumstances. Many differ-
ent solutions have been proposed in the past, based, for ex-
ample, on perspectives [42], roles [24], contextual layers [8],
and force trees [9]. Depending on the active context, an ob-
ject might answer a message differently or provide a modi-
fied interface to its users. These approaches mainly concen-
trate on dynamically modifying an object’s behavior, how-
ever, there is no support for behavior reuse between object
as it exists in traits or mixins.

Aspect-Oriented Programming
Aspect-Oriented Programming (AOP) [22] modularizes
cross cutting concerns. Join points define all locations in
a program that can possibly trigger the execution of addi-
tional cross-cutting code (advice). Pointcuts define at run-
time if an advice is executed. Both aspects and talents can
add new methods to existing classes. Most implementations
of AOP such as AspectJ [23] support weaving code at more
fine-grained join points such as field accesses, which is not
supported by talents. Although AOP is used to introduce
changes into software systems, the focus is on cross-cutting
concerns, rather than on reflecting on the system.

Aspects are concerns that cannot be cleanly encapsulated
in a generalized abstraction (i.e., object, method, mixin).
This means that in contrast to talents, aspects are neither
designed nor used to build dynamic abstraction and com-
ponents from scratch, but rather to alter the performance or
semantics of the components in systemic ways.

6. Discussion
In this section we discuss other benefits that talents bring to
Smalltalk.

6.1 State
Bifröst structural meta-objects provide features for adding
and removing state from a single object. Theoretically, tal-
ents can provide something that trait cannot, state. Moreover,
talents can provide operators for composing state adapta-
tions. This composition is not present in object-specific tech-
niques like mixins and Newspeak modules.

However, stateful traits [2] have shown that state compo-
sition is not simple to achieve.

6.2 Scoping
Scoping talents dynamically is of key importance because
it allows us to reflect in which context the added features
should be active and also to control the extent of the system
that is modified. An object might require to have certain
features in one context while having others features in a
different context. Let us analyze an example to understand
the motivation for scoping talents.

A bank financial system is divided in two main layers: the
domain and the persistency layer. The domain layer models
the financial system requirements and features. The persis-
tency layer deals with the requirements of persisting the do-
main abstraction in a relational database. When testing the
domain behavior of this application we do not want to trigger
database-related behavior. Normally, this is solved through
mocking or dependency injection . However, these solutions
are not simple to implement in large and legacy systems
which are not fully understood, and where any change can
bring undesired side effects. Scoped talents can solve this
situation by defining a scope around the test cases. When
the tests are executed the database access objects are mod-
ified by a talent which mocks the execution of database re-
lated actions. In a highly-available system which cannot be
stopped, like a financial trading operation, scoped talents can
help in actions like: auditing for the central financial author-
ity, introducing lazy persistency for updating the database,
logging. This is similar to the idea of modules in Newspeak.

6.3 Flattening
Flattening is the technique that folds into a class all the
behavior that has been added to an object. There are two
types of flattening in talents:

Flattening on the original class. Once an object has been
composed with multiple talents it has a particular behavior.
The developer can analyze this added behavior and from a
modeling point of view realize that all instances of the ob-
ject’s class should have these changes. This kind of flattening
applies the talent composition to the object’s class.

Flattening on a new class. On the other hand the devel-
oper might realize that the new responsibilities of the object
is relevant enough to be modeled with a separate abstrac-
tion. Thus a new class has to be created cloning the com-
posed object behavior. This new class will inherit from the
previous object class. Deleted methods will be added with a
shouldNotCallMethod exception to avoid inheriting the imple-
mentation.

7. Examples
In this section we present a number of example applications
of talents.

7.1 Mocking
Let us assume that we need to test a class which mod-
els a solvency analysis of the assets of a financial insti-

tution customer. The method we need to test is Solvency-

Analysis>>isSolvent: aCustomer. This method delegates to
SolvencyAnalysis>>assetsOf: aCustomer which executes a
complex calculation of the various assets and portfolios of
the customer.

We are only interested in isolating the behavior of isSolvent:
, we are not interested in the complexities of assetsOf:

1 SolvencyAnalysisTest>>testIsSolvent
2 | aCustomer anAnalysis |
3 aCustomer := Customer named: 'test'.
4 anAnalysis := SolvencyAnalysis new.
5 anAnalysis method: #assetsOf: shouldReturn: 1.
6 self assert: (anAnalysis isSolvent: aCustomer).
7 anAnalysis method: #assetsOf: shouldReturn: -1.
8 self deny: (anAnalysis isSolvent: aCustomer).

We added the method method:shouldReturn: to the class
Object which creates a talent with a method named as the
first argument and with the body provided by the second
argument. In line 5 and 7 you can see the use of this behavior.
If the method assetsOf: return a positive amount then the
customer is solvent otherwise not.

7.2 Compiler examples
Cohen and Gil provide an example in the context of object
evolution [7]. In many compiler designs, the parser gener-
ates an Abstract Syntax Tree (AST) from the source code;
the back-end then processes this tree. Often, the parser does
not have the knowledge required for classifying a given AST
node at its most refined representation level. For example,
in the Smalltalk compiler’s parser a variable access is mod-
eled as an ASTVariableNode, there is no distinction between
instance variables, class variables, globals or temporals. As
the compiler advances through its phases these AST nodes
are going to be classified in an abstraction called the lexi-
cal scope tree. However, when analyzing the AST structure
we require information about types of variables and scopes.
Using talents we can add behavior to AST variable nodes to
specify them as instance variable, class variables and tem-
porals. We can also remove methods from AST nodes that
do not make sense for the new specification of the node. The
talent composition mechanism will be particularly useful in
merging these different talents on AST nodes.

7.3 State Pattern
The state pattern [17] models the different states a domain
object might have. When this object needs to do something
then it delegates the decision of what to do to its state. A
class per object state is created with the required behavior.
Sometimes, multiple instances of each state are created and
sometimes a singleton pattern is used.

Instead of having a state abstract class and then concrete
subclasses for each of the more specific states we could use
talents. We will have a single state class and then create as
many instances as different states are. We can model each
specific state with a different talent that is applied to the

state’s instances, thus avoiding the creation of multiple state
specific classes.

8. Conclusion and Future Work
This paper presented talents, a dynamic compositional model
for reusing behavior. Talents are composed using a set of
operations: composition, exclusion and aliasing. These op-
erations provide a flexible composition mechanism while
avoiding the problems found in mixins and traits.

Talents are most useful in composing behavior for dif-
ferent extensions that have to be applied to the same base
classes, thus dynamically adapting the behavior of the in-
stances of these classes seems natural to obtaining a different
protocol.

Managing talents can currently be complicated since the
development tools are unaware of them. We plan on devel-
oping a user interface which takes talents into account both
helping in their definition and composition.

We plan on providing a more mature implementation of
the talents scoping facilities. This technique shows great
potential for the requirements of modern applications, such
as dynamic adaptation and dependency injection for testing,
database accesses, profiling, and so on.

Acknowledgments
We gratefully acknowledge the financial support of the Swiss Na-
tional Science Foundation for the project “Synchronizing Models
and Code” (SNF Project No. 200020-131827, Oct. 2010 – Sept.
2012). We also like to thank Simon Denier for his feedback on ear-
lier drafts of this paper.

References
[1] D. Ancona, G. Lagorio, and E. Zucca. Jam — a smooth

extension of Java with mixins. In ECOOP 2000, number 1850
in Lecture Notes in Computer Science, pages 145–178, 2000.

[2] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. State-
ful traits and their formalization. Journal of Computer Lan-
guages, Systems and Structures, 34(2-3):83–108, 2008. ISSN
1477-8424. doi: 10.1016/j.cl.2007.05.003.

[3] A. H. Borning and D. H. Ingalls. Multiple inheritance in
Smalltalk-80. In Proceedings at the National Conference on
AI, pages 234–237, Pittsburgh, PA, 1982.

[4] G. Bracha. The Programming Language Jigsaw: Mixins,
Modularity and Multiple Inheritance. PhD thesis, Dept. of
Computer Science, University of Utah, Mar. 1992.

[5] G. Bracha and W. Cook. Mixin-based inheritance. In Pro-
ceedings OOPSLA/ECOOP ’90, ACM SIGPLAN Notices, vol-
ume 25, pages 303–311, Oct. 1990.

[6] G. Bracha, P. von der Ahé, V. Bykov, Y. Kashai, W. Maddox,
and E. Miranda. Modules as objects in Newspeak. In Pro-
ceedings of the 24th European conference on Object-oriented
programming, ECOOP’10, pages 405–428, Berlin, Heidel-
berg, 2010. Springer-Verlag. ISBN 3-642-14106-4, 978-3-
642-14106-5. doi: 10.1007/978-3-642-14107-2 20.

[7] T. Cohen and J. Y. Gil. Three approaches to object evolu-
tion. In Proceedings of the 7th International Conference on
Principles and Practice of Programming in Java, PPPJ ’09,
pages 57–66, New York, NY, USA, 2009. ACM. ISBN 978-
1-60558-598-7. doi: 10.1145/1596655.1596665.

[8] P. Costanza and R. Hirschfeld. Language constructs for
context-oriented programming: An overview of ContextL. In
Proceedings of the Dynamic Languages Symposium (DLS)
’05, co-organized with OOPSLA’05, pages 1–10, New York,
NY, USA, Oct. 2005. ACM. ISBN 1-59593-283-6. doi:
10.1145/1146841.1146842.

[9] B. Darderes and M. Prieto. Subjective behavior: a general
dynamic method dispatch. In OOPSLA Workshop on Revival
of Dynamic Languages, Oct. 2004.

[10] L. G. DeMichiel and R. P. Gabriel. The Common Lisp object
system: An overview. In J. Bézivin, J.-M. Hullot, P. Cointe,
and H. Lieberman, editors, Proceedings ECOOP ’87, vol-
ume 276 of LNCS, pages 151–170, Paris, France, June 1987.
Springer-Verlag.

[11] P. Di Gianantonio, F. Honsell, and L. Liquori. A lambda calcu-
lus of objects with self-inflicted extension. In Proceedings of
the 13th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, OOPSLA
’98, pages 166–178, New York, NY, USA, 1998. ACM. ISBN
1-58113-005-8. doi: 10.1145/286936.286955.

[12] R. Dixon, T. McKee, M. Vaughan, and P. Schweizer. A
fast method dispatcher for compiled languages with multiple
inheritance. In Proceedings OOPSLA ’89, ACM SIGPLAN
Notices, volume 24, pages 211–214, Oct. 1989.

[13] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and
P. Giannini. Fickle: Dynamic object re-classification. In
Proceedings of the 15th European Conference on Object-
Oriented Programming, ECOOP ’01, pages 130–149, Lon-
don, UK, UK, 2001. Springer-Verlag. ISBN 3-540-42206-4.

[14] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and
A. P. Black. Traits: A mechanism for fine-grained reuse.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 28(2):331–388, Mar. 2006. ISSN 0164-0925. doi:
10.1145/1119479.1119483.

[15] R. Ducournau, M. Habib, M. Huchard, and M. Mugnier.
Monotonic conflict resolution mechanisms for inheritance.
In Proceedings OOPSLA ’92, ACM SIGPLAN Notices, vol-
ume 27, pages 16–24, Oct. 1992.

[16] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and
mixins. In Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
171–183. ACM Press, 1998. ISBN 0-89791-979-3. doi:
10.1145/268946.268961.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addi-
son Wesley Professional, Reading, Mass., 1995. ISBN 978-
0201633610.

[18] G. Ghelli. Foundations for extensible objects with roles. Inf.
Comput., 175(1):50–75, 2002.

[19] T. Gı̂rba. The Moose Book. Self Published, 2010.

[20] A. Goldberg and D. Robson. Smalltalk 80: the Language and
its Implementation. Addison Wesley, Reading, Mass., May
1983. ISBN 0-201-13688-0.

[21] S. E. Keene. Object-Oriented Programming in Common-Lisp.
Addison Wesley, 1989.

[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming.
In M. Aksit and S. Matsuoka, editors, Proceedings ECOOP
’97, volume 1241 of LNCS, pages 220–242, Jyvaskyla, Fin-
land, June 1997. Springer-Verlag. doi: 10.1007/BFb0053381.

[23] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In Proceed-
ings ECOOP 2001, number 2072 in LNCS, pages 327–353.
Springer Verlag, 2001.

[24] B. B. Kristensen. Object-oriented modeling with roles. In
J. Murphy and B. Stone, editors, Proceedings of the 2nd In-
ternational Conference on Object-Oriented Information Sys-
tems, pages 57–71. Springer-Verlag, 1995.

[25] J. A. Lawless and M. M. Milner. Understanding Clos the
Common Lisp Object System. Digital Press, 1989.

[26] H. Lieberman. Using prototypical objects to implement
shared behavior in object oriented systems. In Proceedings
OOPSLA ’86, ACM SIGPLAN Notices, volume 21, pages
214–223, Nov. 1986. doi: 10.1145/960112.28718.

[27] O. L. Madsen, B. Møller-Pedersen, and K. Nygaard. Object-
Oriented Programming in the Beta Programming Language.
Addison Wesley, Reading, Mass., 1993. ISBN 0-201-62430-
3.

[28] Y. Matsumoto. Ruby in a Nutshell. O’Reilly, 2001. ISBN
0596002149.

[29] J. McAffer. Engineering the meta level. In G. Kiczales, editor,
Proceedings of the 1st International Conference on Metalevel
Architectures and Reflection (Reflection 96), San Francisco,
USA, Apr. 1996.

[30] T. Mens and M. van Limberghen. Encapsulation and composi-
tion as orthogonal operators on mixins: A solution to multiple
inheritance problems. Object Oriented Systems, 3(1):1–30,
1996.

[31] B. Meyer. Object-Oriented Software Construction. Prentice-
Hall, second edition, 1997.

[32] D. A. Moon. Object-oriented programming with Flavors.
In Proceedings OOPSLA ’86, ACM SIGPLAN Notices, vol-
ume 21, pages 1–8, Nov. 1986.

[33] O. Nierstrasz, S. Ducasse, and T. Gı̂rba. The story of Moose:
an agile reengineering environment. In Proceedings of the
European Software Engineering Conference (ESEC/FSE’05),
pages 1–10, New York NY, 2005. ACM Press. ISBN 1-59593-
014-0. doi: 10.1145/1095430.1081707. Invited paper.

[34] A. Paepcke. User-level language crafting. In Object-Oriented
Programming: the CLOS perspective, pages 66–99. MIT
Press, 1993.

[35] F. Perin. MooseJEE: A Moose extension to enable the assess-
ment of JEAs. In Proceedings of the 26th International Con-
ference on Software Maintenance (ICSM 2010) (Tool Demon-
stration), Sept. 2010. doi: 10.1109/ICSM.2010.5609569.

[36] F. Perin, T. Gı̂rba, and O. Nierstrasz. Recovery and analysis
of transaction scope from scattered information in Java en-
terprise applications. In Proceedings of International Con-
ference on Software Maintenance 2010, Sept. 2010. doi:
10.1109/ICSM.2010.5609572.

[37] A. Rashid and M. Aksit, editors. Transactions on Aspect-
Oriented Software Development II, volume 4242 of Lecture
Notes in Computer Science, 2006. Springer. ISBN 3-540-
48890-1.

[38] J. Ressia, L. Renggli, T. Gı̂rba, and O. Nierstrasz. Run-
time evolution through explicit meta-objects. In Pro-
ceedings of the 5th Workshop on Models@run.time at
the ACM/IEEE 13th International Conference on Model
Driven Engineering Languages and Systems (MODELS
2010), pages 37–48, Oct. 2010. http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-641/.

[39] C. Schaffert, T. Cooper, B. Bullis, M. Killian, and C. Wilpolt.
An Introduction to Trellis/Owl. In Proceedings OOPSLA ’86,
ACM SIGPLAN Notices, volume 21, pages 9–16, Nov. 1986.

[40] N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits:
Composable units of behavior. In Proceedings of European
Conference on Object-Oriented Programming (ECOOP’03),
volume 2743 of LNCS, pages 248–274. Springer Verlag, July
2003. ISBN 978-3-540-40531-3. doi: 10.1007/b11832.

[41] C. Smith and S. Drossopoulou. Chai: Typed traits in Java. In
Proceedings ECOOP 2005, 2005.

[42] R. B. Smith and D. Ungar. A simple and unifying
approach to subjective objects. TAPOS special issue
on Subjectivity in Object-Oriented Systems, 2(3):161–178,
1996. doi: 10.1002/(SICI)1096-9942(1996)2:3%3C161::
AID-TAPO3%3E3.0.CO;2-Z.

[43] B. Stroustrup. The C++ Programming Language. Addison
Wesley, Reading, Mass., 1986. ISBN 0-201-53992-6.

[44] P. F. Sweeney and J. Y. Gil. Space and time-efficient memory
layout for multiple inheritance. In Proceedings OOPSLA ’99,
pages 256–275. ACM Press, 1999. ISBN 1-58113-238-7. doi:
10.1145/320384.320408.

[45] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz. A
meta-model for language-independent refactoring. In Pro-
ceedings of International Symposium on Principles of Soft-
ware Evolution (ISPSE ’00), pages 157–167. IEEE Computer
Society Press, 2000. doi: 10.1109/ISPSE.2000.913233.

[46] D. Ungar and R. B. Smith. Self: The power of simplicity.
In Proceedings OOPSLA ’87, ACM SIGPLAN Notices, vol-
ume 22, pages 227–242, Dec. 1987. doi: 10.1145/38765.
38828.

IWST 2011 Selected papers

118

Towards Structural Decomposition of Reflection with Mirrors

Nick Papoulias1,2 Noury Bouraqadi2 Marcus Denker1
Stéphane Ducasse1 Luc Fabresse2

1RMoD Project-Team, Inria Lille–Nord Europe / Université de Lille 1
2Université Lille Nord de France, Ecole des Mines de Douai
{nick.papoulias,noury.bouraqadi,luc.fabresse}@mines-douai.fr,

{marcus.denker,stephane.ducasse}@inria.fr

Abstract
Mirrors are meta-level entities introduced to decouple reflec-
tion from the base-level system. Current mirror-based sys-
tems focus on functional decomposition of reflection. In this
paper we advocate that mirrors should also address structural
decomposition. Mirrors should not only be the entry points
of reflective behavior but also be the storage entities of meta-
information. This decomposition can help resolve issues in
terms of resource constraints (e.g. embedded systems and
robotics) or security. Indeed, structural decomposition en-
ables discarding meta-information.

1. Introduction
Reflective Object Oriented languages provide a conceptual
and design advantage due to their dynamic nature. This
advantage often comes at the price of resource intensive
solutions for our computational problems. In areas where
there are resource constraints, reflective languages aid the
design process, but their reflective nature is a burden upon
deployment. Moreover security is an issue in the presence of
reflective facilities and meta-information.

Mirrors [6] first introduced in the language Self [18] try
to remedy this situation. Mirrors provide the decoupling of
reflection from the base system through functional decompo-
sition [3]. This means that reflective methods on objects are
migrated to separate entities (called Mirrors) that conform
to a specific behavior. This behavior can be described via in-
terfaces or abstract classes, allowing different implementa-
tions. Thanks to this functional decomposition, it is possible
to later discard the reflective behavior of a language.

On the contrary in classical implementations of reflec-
tion (as in Smalltalk) there is no clear specification as to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c� ACM [to be supplied]. . . $10.00

where and how meta-information and reflective functional-
ity is stored, can be accesed, and how exactly (semantically
or otherwise) it interacts with the base system.

A clear example of this problematic situation is given in
[6] and it’s generality easily encompasses nearly all reflec-
tive OO languages in current use today. To illustrate this we
provide and discuss the same example for Smalltalk in Fig-
ure 1.

What the code-snippet in Figure 1 illustrates is that the
meta-linguistic part of the system, specifically in this exam-
ple the acquisition of class and superclass references, is im-
plemented and accessed as ad-hoc functionality inside the
base system of the language. Base and Meta level function-
ality is thus indistinguishably mixed in program code.

myCar := Car new.
carClass := myCar class.
anotherCar := carClass new.
carSuperclass := carClass superclass.

Figure 1. The initial example of Bracha and Ungar in
Smalltalk

Mirror based reflection deviates from this perspective by
proposing a specific design pattern for meta-level access that
can exhibit certain desired characteristics such as:

Encapsulation The ability of mirrors to encapsulate the re-
flective behavior and meta-information of objects, allow-
ing different implementations.

Stratification The ability of mirrors to functionally decom-
pose reflection from the base system, allowing the meta-
level to be discarded when not needed.

Ontological Correspondence The ability of mirrors to de-
scribe and reflect a language in its entirety. This is a de-
rived property that depends solely on the completeness of
the mirror implementation.

Although mirrors support multiple implementations
through encapsulation, there always exists some original
source of meta-information in reflective languages. This

original source may well reside in the base system of the
language, in abstract syntax trees, in separate source files, in
system dictionaries, in the object representation or inside the
virtual-machine.

Since mirrors describe only the functional decomposition
of reflection there is no specification for the stratification of
the meta-information itself. This fact impacts the level of
stratification that mirrors can offer.

In this paper, we propose a solution to this problem by
means of structural decomposition for reflection. Structural
decomposition is achieved by extending mirrors to be the
storage entities of meta-information. We also distinguish
between the high-level language meta-information and low-
level meta-information from the perspective of the VM. We
argue that although low-level information is the limit of
stratification, it can be clearly decomposed from the base
object model of a language.

In Section 2 we discuss stratification of reflection in the
context of resource and deployment constraints. In Section
3 we provide a reference model for structural decomposition
of reflection. Finally in Section 4, we describe and validate
a prototype for our proposal.

2. Discussion on Structural Decomposition
2.1 Functional and Structural Decomposition
Both in literature [6] and in state-of-the-art implementations
of mirrors [4] the emphasis is given on the functional de-
composition of reflection. This means that there is no spe-
cific description for the origin of meta-information or their
storage point in the system. It follows that the stratification
property of mirrors discussed in literature [6] does not apply
to meta-data.

This is why the usual strategy for mirror instantiation is
to collect the meta-information from the system as a whole
(through primitives, separate source files or otherwise) [14].
Mirrors are not the original source of meta-information.

In existing mirror-based systems, one can only stratify
the reflection functionality not the actual meta-data (see left
part of Figure 2). This situation raises two issues. On the
one hand, unused meta-data cannot be discarded to free
system resources. On the other hand, undesirable access to
this meta-data is possible since they still reside within the
system. The impact of these facts should not be underesti-
mated. Meta-information are widely used in reflective OO
languages such as: global resolution names, names of in-
stance variables and methods, system categories and pack-
aging information, the code for each module, sub-module
in the language, abstract syntax trees, executional, profiling
and tracing information.

Structural decomposition of reflection through mirrors
would help to extend the property of stratification to meta-
data. Thus, one can effectively discard meta-data (see right
part of Figure 2). As an analogy to this, in c-like languages
one is able to discard not only debugging facilities but also

meta-information [12, 17] upon deployment for efficiency
reasons.

Classic mirror-based
 systems

Our goalSmalltalk

Reflective
Functionality

Meta-Data

Base-Level

FIX DISCARDABLE

FIX

FIX

FIX

FIX

DISCARDABLE

DISCARDABLE

FIX

Figure 2. Our goal, towards structural decomposition with
mirrors

2.2 Low-level vs High-level Meta-information
Bracha and Ungar [6] make the distinction between low-
level and high-level mirrors. We discuss this distinction in
the light of structural decomposition. Although structural
decomposition of all meta-information is desirable, not all
meta-information should be discarded. The run-time engine
does require some meta-information to actually run the base-
level. We qualify such meta-information as low-level. This
information usually includes: class reference, superclass ref-
erence and unique indexes for each method.

To sum up we believe that all meta-information should be
decomposed and thus materialized in mirrors. Furthermore
there should be a distinction as in [6] between low-level and
high-level mirrors. Low-level mirrors cannot be discarded,
since they encapsulate low-level meta-data. On the opposite
all high-level meta-information should be materialized in
high-level mirrors. Thus, it can be discarded.

3. Reference Model for the Structural
Decomposition of Reflection

Aiming for simplicity and generality in our model, we chose
to derive it from ObjVLisp [8]. We extended it by adding a
meta-level with both an abstract and a concrete specification
of mirrors. In this object model:

• Every object in the system has a Mirror, including classes
and meta-classes.

• Mirrors are meta-level entities that hold all the meta-
information of the respective object that they reflect on,
and they are the sole provider of all reflective functional-
ity on that object.

• All other entities in the language (including meta-
classes) can provide reflective functionalities only explic-
itly through mirrors.

Object

Point

Class

aPoint
BASE LEVEL META LEVEL

ObjectMirror ClassMirror

Mirror

AbstractMirror
Object

AbstractMirror
Class

Mirror on:
Class

Mirror on:
aPoint

Mirror on:
Object

Mirror on:
Point

Figure 3. The MetaTalk Object Model

• Dynamic class definition can only be done through mir-
rors.

In our object model the base level is self-contained and
can function independently. It can only instantiate terminal
objects, without their meta-level counter parts. This allows
the base system to operate seperately and effectively pre-
vents dynamic addition of behavior in the absence of Mir-
rors.

All reflective functionality and meta-information is ac-
cessible through mirrors. This information also includes
low-level meta-information which is part of an object’s rep-
resentation but cannot be accessed from the base level.

4. Implementation and Validation
4.1 Implementation
For validating the structural decomposition of meta-
information in a mirror based reflection system we imple-
mented the experimental class-based language MetaTalk.
MetaTalk focuses on providing these characteristics to a dy-
namically typed OO language inspired by Smalltalk [10],
Resilient (a Smalltalk descendant targeting embedded de-
vices) [1] and ObjVLisp [8].

MetaTalk follows the guidelines of our reference object
model described in Section 3. It was implemented from
top to bottom (object-representation, compiler, and virtual-
machine) in the open-source, smalltalk-inspired environ-
ment Pharo [2]. Our compiler relies on PetitParser [16].
Compilation by definition is taking place in the presence
of meta-information. Only the meta-level has access to the
compiler. Thus it can be discarded from the system in the
absence of mirrors.The code for our open-source language
prototype can be found in the SqueakSource repository1.

1 http://www.squeaksource.com/MetaTalk/

4.2 Validation
For the validation of structural decomposition one needs to
test program execution both in the presence and in the ab-
sence of mirrors. Base level functionality should be seman-
tically identical in both cases. On the contrary access to the
meta level should only be possible in the presence of mir-
rors. If base level functionality is validated to be identical in
both cases, this means that mirrors can be safely discarded
when not needed. Moreover access to the meta-level should
be validated to raise an error or an exception in the absence
of mirrors.

Following this strategy for the validation of our prototype
we took the following successive steps:

1. We compiled our kernel from sources, and validated its
sound execution in the complete absence of the meta-
level.

2. We then compiled our meta-kernel from sources, provid-
ing the system with its reflective functionality.

3. Subsequently we allowed global access to mirrors by
invoking: Baselevel reflect: true , which is signaling the
VM to permit mirrors to be pushed in the execution stack.
From this point on and for the rest of the life of the
system, no further compilation from sources can take
place.

4. Then we dynamically created new classes, a superclass
and a subclass through the meta-level (which by now
is the only way to introduce new functionality to the
system).

5. We tested the newly created classes for both their base
and meta level functionality (via mirrors).

6. Subsequently we forbide global access to mirrors by in-
voking: BaseLevel reflect: false.

7. Finally we repeated step 5 of the process, verifying that:
(a) base level functionality of the newly created classes
was not by anyway altered by the absence of the meta-
level, thus concluding that the meta-level could be safely
discarded; (b) the subsequent attempt to access the meta-
level signaled a terminal error by the vm.

Steps 4 through 7 are seen in Figures 4 and 5, respectively
while the standard output generated in these steps can be
found in Figure 6.

5. Related Work
The work of Bracha and Ungar in [6] discusses the func-
tional decomposition of reflection via mirrors. We believe
that we have succeeded in showing that structural decompo-
sition is also essential for extending the property of stratifi-
cation to meta-data.

The work of Lorenz and Vlissides [13] on pluggable-
reflection, concerns reflection as a uniform interface in the
presence of multiple sources of meta-information. It is re-

newClass := ((Mirror on: Object) subClass: ’PointX’ instanceVari-
ableNames: {’x’ . ’y’.}) baseObject.

(Mirror on: newClass) atMethod: ’initialize’ put: ’x := 0. y := 0.’.
(Mirror on: newClass) atMethod: ’x’ put: ’^ x.’.
(Mirror on: newClass) atMethod: ’y’ put: ’^ y.’.
(Mirror on: newClass) atMethod: ’x: aNumber’ put: ’x := aNum-
ber asNumber.’.
(Mirror on: newClass) atMethod: ’y: aNumber’ put: ’y := aNum-
ber asNumber.’.
(Mirror on: newClass) atMethod: ’asString’ put: ’^ x as-
String , ’’@’’ , y asString.’.

newSubClass := ((Mirror on: newClass) subClass: ’Point3DX’ in-
stanceVariableNames: ’z’.) baseObject.

(Mirror on: newSubClass) atMethod: ’initialize’ put: ’super initial-
ize. z := 0.’.
(Mirror on: newSubClass) atMethod: ’z’ put: ’^ z.’.
(Mirror on: newSubClass) atMethod: ’z: aNum-
ber’ put: ’z := aNumber.’.
(Mirror on: newSubClass) atMethod: ’asString’ put: ’^ super as-
String , ’’@’’ , z asString.’.

Figure 4. Step 4 of the validation process

lated to the encapsulation property of mirrors, allowing mul-
tiple implementations but not stratification. Their approach
to the reflection interface is extralingual and does not con-
cern the reflective system inside the language or it’s decom-
position from the base level.

A comprehensive comparison of mirror-based systems
with other approaches for reflection in general, is given
in [6].

Specifically for Smalltalk the language itself strongly
couples the base and the meta-level. A declarative model for
the definition of Smalltalk programs as is presented in [19].
can be used as a basis for the execution of Smalltalk pro-
grams that do not use reflection. In our work using mirrors
and structural decomposition, we have shown that even in
an imperative model for a language, reflection can be decou-
pled and stratified when it is not needed. Furthermore in our
validation prototype the kernel is compiled from sources and
can be used separately as a non reflective declarative system.

The Resilient platform [1] targeting embedded devices,
offers remote reflection, by separating the programming
from the running environment, and greatly succeeds in min-
imizing the deployment footprint. The reflection scheme
though is not mirror based and cannot provide encapsula-
tion. From the point of view of stratification and structural
decomposition in such a scenario we believe that the deploy-
ment footprint can be reduced even more.

Implementations of mirror - based reflective sub-systems,
that in general terms follow the premises of [6] already

’Validation process...’ print.

’Base level functionality, in the presense of mirrors:’ print.
p3D := newSubClass new.
p3D z: 30.
p3D x: 1.
p3D print.

’Meta level functionality, in the presense of mirrors:’ print.
p3D := newSubClass new.
(Mirror on: p3D) perform: ’z:’ withArguments: 30..
(Mirror on: p3D) perform: ’x:’ withArguments: 1..
(Mirror on: p3D) print.

BaseLevel reflect: false.
’Base level functionality, in the absense of mirrors:’ print.

p3D := newSubClass new.
p3D z: 30.
p3D x: 1.
p3D print.

’Meta level functionality, in the absense of mirrors -- should sig-
nal an error by the vm.’ print.
p3D := newSubClass new.
(Mirror on: p3D) perform: ’z:’ withArguments: 30..
(Mirror on: p3D) perform: ’x:’ withArguments: 1..
(Mirror on: p3D) print.

Figure 5. Steps 5, 6 and 7 of the validation process.

exist in languages as diverse as Java [11], Self [14] ,
StrongTalk [5], Newspeak [4] and AmbientTalk [15] with
on-going smaller or larger efforts to implement them for
C++ [7], Scala [9], Javascript [20] and possibly other plat-
forms.

From the point of view of structural decomposition, and
although our focus is on dynamic OO languages, the on-
going effort of the C++ community for mirror - based re-
flection, presents some interest. The static nature of the lan-
guage suggests that structural decomposition in these lan-
guages should indeed be possible.

But, it is exactly this nature of the language that forces
the implementation of reflective facilities to resort to ad-
hoc mechanisms for generating the meta-data. In the case of
C++ these come in the form of explicit registration macros
for each and every name-space, type or class defined. Hint-
ing that again structural decomposition and stratification of
the reflective facilities could come only in the form of re-
compilation without the supporting libraries and macros.

6. Conclusion and Future Work
We have raised the question of structural decomposition of
reflection and meta-information, in the context of mirror-

MetaTalk>>> Validation process...

MetaTalk>>> Base level functionality, in the presense of mirrors:
MetaTalk>>> 1@0@30

MetaTalk>>> Meta level functionality, in the presense of mirrors:
MetaTalk>>> Mirror on: a Point3DX 1@0@30

MetaTalk>>> Base level functionality, in the absense of mirrors:
MetaTalk>>> 1@0@30

MetaTalk>>> Meta level functionality, in the absense of mirrors -
- should signal an error by the vm.
...
<’metatalk-vm-exception: meta level access is disabled’>

Figure 6. Standard output generated from steps 5 to 7 of the
validation process.

based systems. We showed that the property of stratifica-
tion for mirrors, can be weak if structural decomposition is
not taken into account. We provided a solution with a ref-
erence model where mirrors are the initial source of meta-
information. Finally we validated this solution through a
prototype supporting both functional and structural decom-
position of reflection.

In terms of future work, we would like to provide fur-
ther validation and metrics for structural decomposition. We
want to give a more detailed specification of the system for
implementors. Furthermore we would like to advance our
prototype towards ontological correspondence and examine
the role of structural decomposition in the context of behav-
ioral reflection [15].

References
[1] Jakob R. Andersen, Lars Bak, Steffen Grarup, Kasper V.

Lund, Toke Eskildsen, Klaus Marius Hansen, and Mads Torg-
ersen. Design, implementation, and evaluation of the resilient
smalltalk embedded platform. In Proceedings of ESUG Inter-
national Smalltalk Conference 2004, September 2004.

[2] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz,
Damien Pollet, Damien Cassou, and Marcus Denker. Pharo
by Example. Square Bracket Associates, 2009.

[3] Gilad Bracha. Linguistic reflection via mirrors (talk at hpi
potsdam). http://bracha.org/Site/Talks.html, 2010.

[4] Gilad Bracha. Newspeak programming language draft spec-
ification version 0.06. http://bracha.org/newspeak-spec.pdf,
2010.

[5] Gilad Bracha and David Griswold. Strongtalk: Typechecking
Smalltalk in a production environment. In Proceedings OOP-
SLA ’93, ACM SIGPLAN Notices, volume 28, pages 215–230,
October 1993.

[6] Gilad Bracha and David Ungar. Mirrors: design princi-
ples for meta-level facilities of object-oriented programming
languages. In Proceedings of the International Conference

on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’04), ACM SIGPLAN Notices, pages
331–344, New York, NY, USA, 2004. ACM Press.

[7] Matus Chochlik. Mirror c++ reflection utilities.
http://kifri.fri.uniza.sk/ chochlik/mirror-lib/html/, 2011.

[8] Pierre Cointe. Metaclasses are first class: the ObjVlisp model.
In Proceedings OOPSLA ’87, ACM SIGPLAN Notices, vol-
ume 22, pages 156–167, December 1987.

[9] Yohann Coppel. Reflecting scala.
http://lamp.epfl.ch/teaching/projects/archive/coppel_report.pdf,
2008.

[10] Adele Goldberg and Dave Robson. Smalltalk-80: The Lan-
guage. Addison Wesley, 1989.

[11] Sun microsystems, java platform debugger architecture.
http://java.sun.com/products/jpda/.

[12] David MacKenzie Julia Menapace, Jim Kingdon. The "stabs"
debug format, 2004.

[13] David H. Lorenz and John Vlissides. Pluggable reflection:
decoupling meta-interface and implementation. In ICSE ’03:
Proceedings of the 25th International Conference on Software
Engineering, pages 3–13, Washington, DC, USA, 2003. IEEE
Computer Society.

[14] Jacques Malenfant, Christophe Dony, and Pierre Cointe.
Behavioral Reflection in a prototype-based language. In
A. Yonezawa and B. Smith, editors, Proceedings of Int’l Work-
shop on Reflection and Meta-Level Architectures, pages 143–
153, Tokyo, November 1992. RISE and IPA(Japan) + ACM
SIGPLAN.

[15] Stijn Mostinckx, Tom Van Cutsem, Stijn Timbermont, and
Eric Tanter. Mirages: Behavioral intercession in a mirror-
based architecture. In Proceedings the ACM Dynamic Lan-
guages Symposium (DLS 2007), October 2007.

[16] Lukas Renggli, Stéphane Ducasse, Tudor Gîrba, and Oscar
Nierstrasz. Practical dynamic grammars for dynamic lan-
guages. In 4th Workshop on Dynamic Languages and Ap-
plications (DYLA 2010), Malaga, Spain, June 2010.

[17] Stan Shebs Richard Stallman, Roland Pesch. Debugging with
GDB. Gnu Press, 2003.

[18] Randall B. Smith and David Ungar. Programming as an
experience: The inspiration for self. In W. Olthoff, editor,
Proceedings ECOOP ’95, volume 952 of LNCS, pages 303–
330, Aarhus, Denmark, August 1995. Springer-Verlag.

[19] Allen Wirfs-Brock. A declarative model for defin-
ing smalltalk programs. invited talk at oopsla 96.
http://www.smalltalksystems.com/publications/_awss97/SSDCL1.HTM,
1996.

[20] Allen Wirfs-Brock. A prototype mirrors-based refection
system for javascript. https://github.com/allenwb/jsmirrors,
2010.

IWST 2011 Selected papers

124

IWST 2011 Author Index

Author Index

Arévalo, Gabriela 7, 51

Bergel, Alexandre 39, 51, 91
Bouraqadi, Noury 75, 119

Decuzzi, Gisela 45
Denker, Marcus 75, 119
Dias, Martı́n
pagerefpaper7
Dony, Christophe 33
Ducasse, Stephane 119
Ducasse, Stéphane
pagerefpaper7, 75, 91

Fabresse, Luc 33, 75, 119
Fabry, Johan 97

Galdames, Daniel 97
Girba, Tudor 109
Griggio, Carla 45
Gurtner, David 21

Jacas, Ricardo 39

Lagadec, Loic 61
Leiva, Germán 45

Marcos, Claudia 51
Martinez Peck, Mariano 7, 75

Nierstrasz, Oscar 21, 109

Oriol, Manuel 91

Papoulias, Nick 119
Passerini, Nicolás 45
Perin, Fabrizio 109
Polito, Guillermo 45

Renggli, Lukas 109
Ressia, Jorge 109

125

IWST 2011 Author Index

Spacek, Petr 33

Teodorov, Ciprian 61
Tibermacine, Chouki 33

Vidal, Santiago 51

Wernli, Erwann 21

126

