
© 2010 VMware Inc. All rights reserved

Things I Wish I Knew about GemStone/S

ESUG 2011, Friday, 11:45 – 12:30

James Foster, Sr. Member Technical Staff

2

Inspiration

 Nick Ager

• Suggested a session covering "the tools, common problems (eg empty

statements, classHistory) backing-up and restoring, installation, Object Log,

blocking vs Gem based servers, debugging, background processing etc."

 Johan Brichau

• "Count me in too ;-)"

 Stephan Eggermont

 Norbert Hartl

• "Great idea. I'm in."

 Diego Lont

 Tobias Pape

• "/me rises his hand."

 Conrad Taylor

3

Abstract

 This presentation provides an introduction to GemStone/S, a multi-

user Smalltalk with a built-in database. We briefly examine some

issues observed by people who transition to GemStone/S from

other Smalltalks.

 Depending on time, these topics may include installation, tools,

backup/restore, class versions, debugging, concurrence,

background processing, and repository-wide garbage collection.

 Caveat:

• There are three multi-day courses on GemStone/S.

• 45 minutes is not enough time to cover any topic in depth!

4

Presenter

 Software Background

• As a junior-high student in 1971, I discovered the local university‘s computer

center and a life-long obsession with computers began.

• I was introduced to Smalltalk/V for the Mac in the mid-90s, and became a

Smalltalk bigot.

• I am on the Smalltalk Engineering team at VMware, and am a passionate

advocate for GemStone and Seaside.

 Past Careers

• Commercial Pilot

• Lawyer

 Other interests

• Economics

• Politics

• Religion

5

Agenda

 Installation

 Architecture

 Tools

 Backup/Restore

 Class Versions

 Debugging

 Concurrence

 Background Processing

6

Installing GemStone/S 64 Bit

7

Install Guide and Other Documentation

 http://community.gemstone.com/display/GSS64/GemStoneS+64+Documentation

 Release Notes

 Install Guides

• Solaris

• AIX

• Linux

• HP/UX

• Mac/Darwin

 Programming Guide

 Systems Admin Guide

 Topaz Programming Guide

 GemBuilder for C

http://community.gemstone.com/display/GSS64/GemStoneS+64+Documentation

8

Product Distribution

 ftp://ftp.gemstone.com/pub/GemStone64/2.4.4.7

9

Suggested Install Location

 /opt/gemstone/ # root for GemStone-related things

• /opt/gemstone/<productDirectory>/

• Add symbolic link from /opt/gemstone/product

• /opt/gemstone/backups

• /opt/gemstone/bin

• /opt/gemstone/data

• /opt/gemstone/etc

• /opt/gemstone/locks

• /opt/gemstone/log

• /opt/gemstone/Monticello

• /opt/gemstone/product

• $GEMSTONE points here

10

Operating System Configuration

 Shared Memory settings in /etc/sysctl.conf

 Linux:

• kern.shmmax = nnnn # max shared memory segment in bytes

• kern.shmall = nnnn # max 4096-byte pages for shared memory

 Macintosh:

• kern.sysv.shmmax = nnnn # max shared memory segment in bytes

• kern.sysv.shmall = nnn # max 4096-byte pages for shared memory

11

Environment Variables

 See System Administration Guide, Appendix E for full list

• GEMSTONE # full path to product

• /opt/gemstone/product

• GEMSTONE_EXE_CONF # dir or file for executable config files

• /opt/gemstone/etc

• GEMSTONE_NRS_ALL # settings for default directory, log files, etc.

• #dir:/opt/gemstone#log:/var/log/gemstone/%N_%P.log

• GEMSTONE_SYS_CONF # dir or file for system-wide config file

• /opt/gemstone/etc/system.conf

• upgradeLogDir # used for upgrade to new GS/S version

• PATH should include $GEMSTONE/bin

12

Keyfile Capabilities

 Use of GemStone/S 64 Bit requires a "keyfile" that identifies

allowed capabilities (with "Web Edition" no-cost license limits)

• Max repository size (unlimited)

• Max object count (unlimited)

• Max concurrent logins (unlimited)

• Expiration date (none)

• Machine type (Linux or Macintosh)

• Max shared page cache (2 GB)

• Max CPUs used (2)

• Allow use of traversal buffer in GCI-to-Gem communications (no)

• Required for use of GemBuilder for Smalltalk (for VA Smalltalk and Cincom Smalltalk)

• Allow Gems on non-Stone machine (no)

13

Keyfile Location

 $GEMSTONE/seaside/etc/gemstone.key is Web Edition keyfile

• Also available from http://seaside.gemstone.com/etc/

 Location specified in config file to override default

• KEYFILE = $GEMSTONE/sys/gemstone.key

14

Config File

 Default is at $GEMSTONE/data/system.conf

• GEMSTONE_SYS_CONF environment variable specifies another location

 Four (4) required configurations (included in default file)

• DBF_EXTENT_NAMES = $GEMSTONE/data/extent0.dbf;

• STN_TRAN_FULL_LOGGING = FALSE;

• STN_TRAN_LOG_DIRECTORIES = $GEMSTONE/data/, $GEMSTONE/data/;

• STN_TRAN_LOG_SIZES = 100, 100;

 Suggest a file such as /opt/gemstone/etc/seaside.conf

• Include only non-default configurations

• Above plus KEYFILE

15

Agenda

 Installation

 Architecture

 Tools

 Backup/Restore

 Class Versions

 Debugging

 Concurrence

 Background Processing

 Repository-wide Garbage Collection

16

Architecture:

What is Different about GemStone?

17

GemStone Enhancements over Typical Smalltalk

 Large object space

• Object space is (in practice) limited only by disk (not by RAM)

 Transactions

• Related updates can be grouped in an ―all-or-nothing‖ transaction

 Persistence

• Transactions are immediately recorded to a log file

 Multi-user

• Thousands of virtual machines can interact with a single object space

 Multi-machine

• Virtual machines can be on hundreds of hosts

18

Complexities

 Large object space

• Disk is slow, so cache recently-used objects in RAM

 Transactions

• Group changes to support roll-back (abort)

 Persistence

• Recover recent changes in event of crash

 Multi-user

• Isolate each user‘s view (repeatable read)

• Manage concurrency conflicts (avoid simultaneous updates to same object)

• Manage object and class versions (when are updates visible to others?)

 Multi-machine

• Coordinate object updates between machines

19

Programming Issues

 Garbage collection (GC)

• Temporary objects local to virtual machine

• Persistent objects in shared object space

 Large collections

• Iterating can be slow

• Use indexes to improve performance

 Transactions

• Maintaining obsolete views can be expensive

• Object versions (different views of same object can see different values)

• Class versions (schema updates are not immediately applied to objects)

• Avoiding unnecessary concurrency conflicts

20

Architecture:

How it is Done

21

GemStone Architecture

 Repository

• Disk-based ―image‖ holds objects and other data

• Made up of extents (files or raw partitions)

• Objects are on 16k pages

 Gem Process(s)

• Single Smalltalk virtual machine

 Stone Process

• Manages concurrency

 Shared Page Cache

• Fast cache of pages from repository

• Managed by SPC Monitor process

 Other Processes

• GC Gems, Symbol Gem, AIO Page Server, Free Frame Server, etc.

Repository

Gem

Stone

SPC

SPC

Monitor

22

Repository and Extent(s)

 Holds persistent GemStone objects (i.e., the “image”)

 Made up of 1 to 255 extents of up to 32 terabytes each

• On-demand grow

• Pre-grow to maximum size

 Each extent is composed of 16 KB pages

• Root Pages

• Object Table Pages

• Data Pages

• Commit Record Pages

• Free OID List

• Free Page List

 Page ID designates extent and offset

 Statistics: FreePages (Gem vs. Stone)

Repository

23

System Startup

 „startstone‟ command

• Command line arguments for database name and other configurations

• Finds and opens all extents specified in required config file

• Finds and opens transaction log specified in required config file

• Starts Shared Page Cache (SPC) Monitor process (which allocates SPC)

• Starts other processes

• AIO Page Server(s)

• Free Frame Server(s)

• Symbol Gem

• GC Admin Gem

• Reclaim Gem(s)

• Restores missing transactions if last shutdown was not clean (i.e., crash)

• Waits for requests from Gems (login, lock, commit, etc.)

24

Shared Page Cache

 Typical database challenge: disk is slow

 In-RAM cache of pages from repository

 Gem(s) may “attach” (or lock) in-use Frames

 Frame may contain a “dirty” page

 Async IO Page Server(s) write to repository

 Reuse frame only if it is unattached and clean

 Free Frame List

• Maintained by SPC Monitor

• Might be incomplete

• Gem might be forced to scan cache

 Free Frame Server(s) scan for unattached & clean

Repository

SPC

16 KB

Frame

Frame #5

Frame #7

Frame #8

Free Frame List

25

Shared Page Cache Statistics

 Shrpc

• FreeFrameCount

• GlobalDirtyPageCount

• LocalDirtyPageCount

• TargetFreeFrameCount

• TotalAttached

 Pgsvr

• FramesAddedToFreeList

 Gem, Stn

• AttachDelta

• AttachedCount

• FramesFromFindFree

• FramesFromFreeList

• LocalPageCacheHits

• LocalPageCacheMisses

• NonSharedAttached

• TimeInFramesFromFindFree

26

Gem Types

 Linked Gem

• Application loads GemStone C Interface

(GCI) library into its process space

• GCI library contains Gem code and runs in

Application‘s OS process space

 Remote Procedure Call (RPC) Gem

• Application loads GCI library into its process

space

• GCI library asks NetLDI process to start Gem

process

• Gem process can be on same or different

host as application

• Additional communications overhead

• Reduced risk of application corrupting Gem

Application &

GCI Library

Gem

OS Process

Application &

GCI Library

Gem

TCP/IP

OS Process 1

OS Process 2

27

One-Machine Process Locations (Linked Gem)

Application

& GCI

Library
Gem

Stone

SPC

Repository

Stone Host

28

One-Machine Process Locations (RPC Gem)

Application

& GCI

Library

Gem

Stone

SPC

Repository

Stone Host

NetLDI

29

Two-Machine Process Locations (Gem on Stone Host)

Application

& GCI

Library

Client Host

N

E

T

W

O

R

K

Gem

Stone

SPC

Repository

Stone Host

NetLDI

30

Two-Machine Process Locations (Gem Remote from Stone)

Application

& GCI

Library

Gem

Gem Host

Remote SPC

Page

Server

N

E

T

W

O

R

K

NetLDI

Stone

SPC

Repository

Stone Host

Page

Server

NetLDI

31

Three-Machine Process Locations

Application

& GCI

Library

Client Host

N

E

T

W

O

R

K

Gem

Gem Host

Remote SPC

Page

Server

N

E

T

W

O

R

K

NetLDI

Stone

SPC

Repository

Stone Host

Page

Server

NetLDI

32

Gem Startup

 Gem process started (if RPC)

• Linked Gem started with Application

• RPC Gem started by NetLDI based on request from Application (via GCI)

 Application requests login

• Application provides Stone host and name to Gem through GCI library

• Gem contacts Stone and is assigned a session ID and a database view

• Gem connects to SPC on local machine

• Stone asks NetLDI on Gem host to start SPC Monitor if needed

• Application provides user ID and password to Gem through GCI library and

Gem validates user based on lookup in database

 Login complete

• Gem now waits for requests from GCI

• Application submits requests to GCI for Smalltalk execution or objects

33

Architecture:

Database View and Commit Records

34

Database View and Commit Record

 On login, Gem has a database view

 Object Table

• Object ID (OID) == Object Oriented Pointer (OOP)

• Map to Page (offset in an Extent)

• Each view is based on a single Object Table

 Each commit creates a Commit Record

• Reference to unique Object Table

• List of modified objects (Write Set)

• List of Shadowed Pages

246 10343

247

248

10343

-1

Object Table

Object ID Page ID

Object Table Reference

Write Set

Shadowed Pages

35

Commit Records

 There is always at least one database view, or Commit Record (CR)

 On login, a Gem is given the most recently created Commit Record

 Other Gems can share the same Commit Record (login or abort)

 Each (non-empty) commit creates a new Commit Record

 An abort moves a Gem to the latest Commit Record

 Oldest CR may be disposed of if it is not referenced

 Another commit creates another Commit Record

Gem1

CR1 CR2 CR3

Gem2

login login
commitabort commit

36

Commit Record Backlog

 Here we have two Gems and two Commit Records

 Additional commits create more Commit Records (maybe many!)

 Intermediate CRs cannot be disposed of if older CR is referenced

• This can be a major performance issue — a large CR Backlog is bad!

 Problems with excess Commit Records

• They take space in SharedPageCache and/or Repository

• They slow down new commit processing

• They delay garbage collection

Gem1

CR2 CR3

Gem2

CRn

commit

…….

37

SigAbort

 Important to avoid excessive CR Backlog

 Signal requesting an abort (SigAbort) sent to a Gem if and only if:

1. Gem is referencing the oldest Commit Record

2. Gem is not in transaction

3. CR Backlog is above configured value

 If Gem responds quickly to SigAbort, good!

 Stone can dispose of oldest unreferenced CR(s)

Gem1

CR2 CR3

Gem2

CRn

abort

…….

SigAbort

38

LostOtRoot

 If a SigAbort was sent to a Gem and it was ignored for X minutes

• X is configurable, with default of one (1)

 Stone will revoke the Gem‟s database view (Commit Record)

 Stone will send Gem a signal: LostOtRoot (Lost Object Table Root)

• Any object access will give an error

 Stone can dispose of oldest unreferenced CR(s)

 Gem must abort to get a new Commit Record (or logout)

Gem1

CR2 CR3

Gem2

CRn…….

LostOtRoot

abort

39

Transaction State vs. Mode

 Transaction state

• In – commit attempt is allowed (might succeed or fail)

• Out – commit attempt is not allowed and will always give an error

 Transaction mode

• #autoBegin – always in a transaction with a stable view

• #manualBegin – can be in or out, but always a stable view

• #transactionless – can be in or out, stable view only when in transaction

#autoBegin #manualBegin #transactionless

Always in 

Stable view in   

Stable view out N/A 

Can get SigAbort 

Can get SigFinish 

Safe for GBS  

40

Transaction Control

 System abortTransaction

• Abort, losing any existing changes and obtain the most recent Commit Record

• New transaction state:

• ‗In transaction‘ if transaction mode is #autoBegin

• ‗Out of transaction‘ if transaction mode is #manualBegin or #transactionless

 System beginTransaction

• Abort, losing any existing changes and obtain the most recent Commit Record

• Enter the ‗in transaction‘ state (for all transaction modes)

 System commitTransaction

• If commit succeeds, new transaction state:

• ‗In transaction‘ if transaction mode is #autoBegin

• ‗Out of transaction‘ if transaction mode is #manualBegin or #transactionless

• If commit fails, see next slide …

41

Failed Commit

 Reasons for a commit failure

• Another Gem has a lock (read or write) on an object we modified

• An object we modified was modified in a Commit Record after we got our view

 Impact of commit failure

• Update to most recent Commit Record

• No longer on prior Commit Record, so database view is updated; but …

• Still have all locally modified objects

• New database view does not change local modifications of persistent objects

• Still in transaction

• But any further commit attempt will fail

• Gem will need to abort before any subsequent commit can succeed

• Abort will lose all local modifications of persistent objects

• May wish to copy modifications into other objects before abort

• Could reapply changes after abort and attempt another commit

42

Agenda

 Installation

 Architecture

 Tools

 Backup/Restore

 Class Versions

 Debugging

 Concurrence

 Background Processing

 Repository-wide Garbage Collection

43

Tools

44

Tools

 Traditional

• GemBuilder for Smalltalk (GBS)

• Topaz

• Visual Statistics Display (VSD)

• Transaction log analysis scripts

 Built using other Smalltalks

• GemTools (Pharo)

• Jade (Windows/Dolphin)

 Web

• tODE

• WebTools

45

GemBuilder for Smalltalk

 Smalltalk package that wraps GCI library

• Cincom Smalltalk (VisualWorks)

• VA Smalltalk from Instantiations (formerly VisualAge Smalltalk from IBM)

 Provides "transparent" replication between server Smalltalk and

client Smalltalk

• Traditionally used to build "rich client" GUI applications

 Tools

• Code browser

• Debugger

• Inspector

• UserProfile editor

• …

 Not available in Web Edition

46

Topaz

 Command-line wrapper for GCI library

 Limited scripting capabilities

• No control flow (loop/conditionals)

 Used extensively by GemStone's internal developers

• Used to load code (see $GEMSTONE/upgrade)

• Used to test server

• Preferred way to report server product bugs

 Primary customer use is for batch jobs

• SystemRepository>>#fullBackupTo:

• SystemRepository>>#markForCollection

 Useful when GUI-based tools are not available

• SSH to production server behind firewall over WAN

47

Visual Statistics Display (VSD)

 Each process records data to shared page cache (SPC)

• Many values exist and are constantly updated (220 for Gems, 272 for Stone)

• Any process attached to SPC can monitor other processes on same host

 $GEMSTONE/bin/statmonitor

• Periodically copies current data to a file for later analysis

• Every production system should be capturing statistics for later analysis

• If Gems are on separate machine from Stone, need additional statmonitors

 VSD application

• $GEMSTONE/bin/vsd contains an X Window System application (Linux/Mac)

• Window version at http://community.gemstone.com/display/GSS64/VSD

 Vital uses

• Performance tuning

• Crash analysis

http://community.gemstone.com/display/GSS64/VSD

48

Transaction Log Analysis Scripts

 All changes to persistent objects take place in a transaction

• Record of each transaction in transaction logs

 Primary use is to replay transactions

• After restore from backup

• Restart after crash

 Scripts are available to search tranlogs

• Traditional use is for bug analysis ("How did that happen!?")

• Recent enhancements for forensic analysis ("Who made that change?")

 System Administration Guide, Appendix H

• $GEMSTONE/bin/printlogs.sh

• $GEMSTONE/bin/searchlogs.sh

49

GemTools

 Pharo-based GUI application

• Uses Squeak's FFI interface to interact with GCI library

• Pharo is used to provide GUI (primarily with OmniBrowser)

• No support for object replication—pretend that Pharo Smalltalk doesn't exist

 Tools

• Code browser, Monticello browser, Metacello browser

• Workspace, Debugger, Inspector

• Backup/restore menus

 Closely tied to GLASS

• Use of OB means many round-trips to server for each action

 Download from http://seaside.gemstone.com/downloads.html

http://seaside.gemstone.com/downloads.html

50

Jade

 Windows-only stand-alone 1 MB executable build with Dolphin

• Works with all GemStone/S versions (32-bit and 64-bit)

• Does not require any server code to be pre-loaded

• Optimized for slow network (most operations require only one round-trip)

 Tools

• Code browser, Monticello browser

• Workspace, Debugger, Inspector

 Download from http://seaside.gemstone.com/jade/

http://seaside.gemstone.com/jade/

51

tODE – the Object (Centric) Development Environment

 Seaside-based web application

• Runs in Pharo and GemStone

• Non-traditional approach to tools

 Tools

• Code browser, Metacello browser

• Workspace, Debugger, Inspector

 Web Resources

• Code at http://code.google.com/p/tode/

• Mailing list at http://groups.google.com/group/tode_st

http://code.google.com/p/tode/
http://groups.google.com/group/tode_st

52

WebTools

 Javascript application

• Uses async Json queries to lightweight web server in GemStone

• Not a Seaside application; available in any GemStone/S 64 Bit 3.0 database

 Tools

• Code browser

• Statmonitor file graphing

 Extensible with plug-in tools

 Code distributed in $GEMSTONE/examples/www/

53

Agenda

 Installation

 Architecture

 Tools

 Backup/Restore

 Class Versions

 Debugging

 Concurrence

 Background Processing

 Repository-wide Garbage Collection

54

Backup and Restore

55

Documentation

 System Administration Guide for GemStone/S 64 Bit

 Chapter 9: Making and Restoring Backups

56

Types of Backups

 Off-line Extent Copy

 Smalltalk Backup

 On-line Extent Copy

57

Off-line Extent Copy

 Make a copy of extent(s) when system is down.

 Advantages

• Simple to make

• Simple to restore

 Disadvantages

• System must be down

• Copy includes empty space and non-object data

 Recommended for

• Development systems

• Systems that are regularly down due to usage patterns and hardware needs

58

Smalltalk Backup

 Evaluate 'SystemRepository fullBackupTo: aFilePath'

• Alternative method: #'fullBackupCompressedTo:'

• Other methods support multi-file backups to limit file size (for tape backups!)

 Advantages

• Traditional means

• Compact size contains only objects

• Restore results in minimal extent size(s)

 Disadvantages

• Can take significant time to create backup

• Gem process holds a transaction for initial phase

• Restore process more time-consuming

 Recommended for:

• Smaller systems that have not experienced any of the disadvantages

59

Hybrid: On-line Extent Copy

 Process

1. Suspend checkpoints

2. Copy extent(s)

3. Resume checkpoints

 Advantages

• On-line

• Most work is done by OS file copy (as compared to Smalltalk backup)

• Can take advantage of hardware features (split a mirror)

 Disadvantages

• More complex to create & restore

• Backup might be invalid if checkpoints resumed too early

 Recommended for:

• Larger systems

60

Recomendation

 Validate backup file

• copydbf extentOrBackup /dev/null

 Test your restore process

 Keep transaction logs associated with backup

61

Agenda

 Installation

 Architecture

 Tools

 Backup/Restore

 Class Versions

 Debugging

 Concurrence

 Background Processing

 Repository-wide Garbage Collection

62

Class Versions

63

Documentation

 GemStone/S 64 Bit Programming Guide

 Chapter 9

• Class Creation,

• Versions,

• and Instance Migration

64

Class Creation

 Send #'subclass:…' message to object that will be superclass

 What happens in traditional Smalltalks if class already exists?

• Create new class object

• Copy and recompile methods to new class

• Find all instances of old class

• Create new instances of new class for each instance of old class

• Copy values in instance variables from old to new instances

• Perform #'become:'-like action to swap old and new instances

• Perform #'become:'-like action to swap old and new classes

• Garbage collect to remove old class and instances

 Can't do this in GemStone

• Scanning large object space would take too long

• Modifying objects in other session's views would violate isolation

65

Class Versions

 Every class is part of a ClassHistory collection

• Others are related but may have different name and/or schema

• Might be only one Class in ClassHistory

 Object>>#'isKindOf:' checks superclasses and ClassHistory

 Most compiled references to a Class will be updated automatically

• Methods do not reference a Class, but a SymbolAssociation with a value

 Methods are typically copied and recompiled by tools

• Low-level subclass creation does not automatically create methods

 Instances are left with old class until migrated explicitly

66

Instance Migration

 Could leave instances of old class as-is

• Provide method(s) that answer default values for missing instance variables

 Could migrate all at once

• Make instance migration part of general application upgrade process

• Application down-time

• Find all instances and migrate them in one or more transactions

 Could do lazy migration

• Modify code to migrate before any message is sent to old object

• Simple if limited lookup path(s) to object

• Elaborate approach of replacing methods on old class to migrate self

• Could still have background process to finish migration as soon as possible

67

Agenda

 Installation

 Architecture

 Tools

 Backup/Restore

 Class Versions

 Debugging

 Concurrence

 Background Processing

 Repository-wide Garbage Collection

68

Debugging

69

Debugging – Printing/Logging

 System class>>#'addAllToStoneLog:'

 GsFile class

• #'stdout'

• #'stderr'

• #'gciLogClient:'

• #'gciLogServer:'

 TranscriptProxy class>>#'show:'

• Global Transcript points to TranscriptProxy class

• Creates an ObjectLogEntry

• Will send to client if client has registered a ClientForwarder

• Otherwise sends GsFile class>>#'gciLogServer:'

 Store value in global

• UserGlobals at: #'James' put: 'got to step #1 at ' , DateTime now printString

70

Debugging – Halt and Breakpoints

 Object>>#'halt'

• Signals a Halt exception

• Might be trapped by Exception handlers

• Typically reports exception back to GCI client (Topaz, GemTools, etc)

• Similar behavior for most other Error exceptions

 Set breakpoint in method

• Does not require modifying source code

• Applies only to current Gem

• Require tool support (or GsNMethod>>#'setBreakAtStepPoint:')

71

Remote Debugging

 DebuggerLogEntry (subclass of ObjectLogEntry)

• Application may persist a continuation with an error

• DebuggerLogEntry class>>#'createContinuationLabeled:'

• Tools may support opening a debugger on persisted continuation

72

Agenda

 Installation

 Architecture

 Tools

 Backup/Restore

 Class Versions

 Debugging

 Concurrence

 Background Processing

 Repository-wide Garbage Collection

73

Concurrence

74

Documentation

 GemStone/S 64 Bit Programming Guide

 Chapter 7

• Transactions and Concurrency Control

75

Concurrency Issues

 GemStone prevents simultaneous updates to same object

• Each session starts with a database view

• First to commit wins

• Other sessions will get a TransactionConflict error if objects have changed

• This is "optimistic locking"

 Short transactions reduce likelihood of this "physical" conflict

• Abort just before making change and then commit immediately

• Note that value might change based on abort!

76

Logical Conflict

 Seaside framework (mostly) addresses physical conflict problem

• Abort performed immediately before executing callbacks and rendering page

• TransactionConflict error is handled by abort then retrying (up to 10 times)

• Odds are that another attempt will succeed

 Application is responsible for detecting "logical" conflicts

• User may enter data based on old view of database

• Abort may switch to newer view with different data than presented to user

• Seaside will do abort and then replace existing (possibly changed) value with

user's entry

77

Explicit Locking

 Pessimistic Locking

• System class>>#'writeLock:' (and friends)

• If you are successful in obtaining a write lock, then no other session may

commit a change to that object

• Your view might be out-of-date, however, and you need an abort/commit

before modifying the locked object

78

Reduced Conflict Classes

 Certain overlapping modifications to an object might be okay

• Multiple sessions adding objects to a collection

• Adding, changing, or removing the value at different keys in a Dictionary

• Incrementing a counter

 GemStone provides classes that avoid well-defined conflicts

• RcCounter

• RcIdentityBag

• RcQueue

• RcKeyValueDictionary

 Trade-off of slight overhead for avoiding conflicts

79

Agenda

 Installation

 Architecture

 Tools

 Backup/Restore

 Class Versions

 Debugging

 Concurrence

 Background Processing

 Repository-wide Garbage Collection

80

Background Processing

81

Session View

 A single VM (Gem) has a single database view

• A forked Process (via ExecutableBlock>>#'fork') runs in the same view

• A commit or abort by any Smalltalk Process in the session will change the view

for all Smalltalk code running in the Gem

 Typical Smalltalk patterns will not work

• Fork a Process to handle a web request using a unique ODBC connection

• Fork a Process to handle a long-running background task using a unique DB

• Fork a Process to handle web requests and edit code in foreground

 Need a separate Gem for each independent activity

82

Background Processing In GemStone

 Define a 'cron' job for regular maintenance (backup and MFC)

 Start a dedicated Topaz session for background jobs

• Multiple "producers" add tasks to a well-known collection (e.g., an RcQueue)

• Single "consumer" takes tasks from queue, and processes them

• Gem does only one task at a time, in a transaction

• On TransactionConflict error, abort and start over

83

Agenda

 Installation

 Architecture

 Tools

 Backup/Restore

 Class Versions

 Debugging

 Concurrence

 Background Processing

 Repository-wide Garbage Collection

84

Repository Garbage Collection

85

Types of Repository Garbage Collection

 Page reclamation

• Recovering space taken by shadow objects

• Compacting space by copying objects from partially filled pages

 Full markForCollection

• Scan the entire repository for any references to every object

 Epoch GC

• Scan the objects modified during a time period (epoch) for new references to

new objects

 Off-line GC

• Scan the entire repository for any references to objects found to be

unreferenced by an off-line scan

86

Garbage Collection Vocabulary

 AllUsers

• The instance of UserProfileSet that acts as a root for the object graph

 Live object

• An object referenced directly or indirectly from AllUsers

 Dead object

• An object defined in the object table and present on a page, but not live

• A dead object may be referenced by a dead object (but not a live object)

• A dead object may reference both live and dead objects (but it doesn‘t matter)

• The object ID (OOP) and the space of a dead object may be reclaimed

 Shadow object

• When an existing object is modified, it is placed on a new page

• The old page is preserved until no more views reference the old object

• The space can be reclaimed (through page compaction), but not the object ID

87

Summary of Repository-Wide Garbage Collection

 MFC Gem builds possible dead set

• Mark live objects

• Object table sweep

• Record possible dead

 Voting to remove from possible dead set (managed by Stone)

• Current gems vote based on current references at next commit or abort

• GcGem votes on behalf of all commit records since start of MFC

 Cleanup

• Finalizing for selected objects

• Page reclamation

• Return of pages and object IDs to free pool

88

Mark Live Objects

 Find connected objects

• Start with AllUsers as the root of the object graph (the original ‗live‘ object)

• Perform a ‗transitive closure‘ visiting each object referenced from a live object

• Add each live object to a live object set

 Gem: ProgressCount

• Number of live objects found so far

• When this statistic drops back to zero, this step is done

 Configuration

• Set mfcGcPageBufSize

 Process is very I/O and CPU intensive

• Read object table page and data page for every live object

• Same page might be read multiple times

89

Object Table Sweep

 Subtract live objects from all objects to get possible dead set

 Gem: ProgressCount

• Begins at zero (clearing from previous step)

• Count of possible dead objects

• When this statistic drops back to zero, this step is done

90

Record Possible Dead

 Pass possible dead set to stone

 MFC Gem‟s task is now done

 Stn: PossibleDeadSize

• Rough approximation of possible dead set size

91

Voting by Existing Gems

 As each logged-in Gem does an abort or commit

• Stone passes list of possible dead to Gem for voting

• Gem scans its private memory for references to the objects

• Referenced objects are voted ‗not dead‘

 Gem Statistic

• VoteNotDead

 Stn Statistics

• GcPossibleDeadSize

• GcVoteUnderway

• SessionNotVoted

 Garbage collection can stall here

• Voting happens only at the next abort or commit

• A quiet Gem that does not abort or commit will not vote

92

Voting by GcGem („Finalize Voting‟)

 Original live object set is based on view at beginning of MFC

 Any commit since MFC began could have created a reference

 A „write set union‟ of all commit records since MFC began is kept

 GcGem takes possible dead set and searches for new references

 Stn statistics:

• GcPossibleDeadWsUnionSize

• GcSweepCount

• GcPossibleDeadSize

• DeadNotReclaimedSize

 Gem statistic:

• ProgressCount

 At end, we have a definitive dead object set

93

Cleanup: Finalizing

 GcGem reads each object in the dead set

 Certain dead objects require special cleanup

• Collections with indexes

• Compiled methods

 Gem: ProgressCount

 Stn: GcPossibleDeadSize

 Stn: DeadNotReclaimed

94

Cleanup: Reclamation

 GcGem activity

 For each page containing a dead object

• In a transaction, copy all live objects on that page to a new page

• This leaves only shadow objects (the current version is on a new page), dead

objects, and free space on the old page

 Note that the old page might still be referenced from a view

• Shadow objects need to be kept around as long as they are part of a view

 Stn statistics

• GcReclaimState

• GcReclaimNewDataPagesCount

• DeadObjsCount

• FreePages

• GcPagesNeedReclaimSize

• DeadNotReclaimedSize

95

Cleanup: Return to Free Pool

 When commit record for reclaim activity is no longer referenced

 Page IDs and Object IDs associated with that reclaim are added to

the free list

96

Questions?

 James Foster

• jfoster@vmware.com

• http://programminggems.wordpress.com/

mailto:jfoster@vmware.com
http://programminggems.wordpress.com/

