
© 2010 VMware Inc. All rights reserved

Things I Wish I Knew about GemStone/S

ESUG 2011, Friday, 11:45 – 12:30

James Foster, Sr. Member Technical Staff

2

Inspiration

 Nick Ager

• Suggested a session covering "the tools, common problems (eg empty

statements, classHistory) backing-up and restoring, installation, Object Log,

blocking vs Gem based servers, debugging, background processing etc."

 Johan Brichau

• "Count me in too ;-)"

 Stephan Eggermont

 Norbert Hartl

• "Great idea. I'm in."

 Diego Lont

 Tobias Pape

• "/me rises his hand."

 Conrad Taylor

3

Abstract

 This presentation provides an introduction to GemStone/S, a multi-

user Smalltalk with a built-in database. We briefly examine some

issues observed by people who transition to GemStone/S from

other Smalltalks.

 Depending on time, these topics may include installation, tools,

backup/restore, class versions, debugging, concurrence,

background processing, and repository-wide garbage collection.

 Caveat:

• There are three multi-day courses on GemStone/S.

• 45 minutes is not enough time to cover any topic in depth!

4

Presenter

 Software Background

• As a junior-high student in 1971, I discovered the local university‘s computer

center and a life-long obsession with computers began.

• I was introduced to Smalltalk/V for the Mac in the mid-90s, and became a

Smalltalk bigot.

• I am on the Smalltalk Engineering team at VMware, and am a passionate

advocate for GemStone and Seaside.

 Past Careers

• Commercial Pilot

• Lawyer

 Other interests

• Economics

• Politics

• Religion

5

Agenda

 Installation

 Architecture

 Tools

 Backup/Restore

 Class Versions

 Debugging

 Concurrence

 Background Processing

6

Installing GemStone/S 64 Bit

7

Install Guide and Other Documentation

 http://community.gemstone.com/display/GSS64/GemStoneS+64+Documentation

 Release Notes

 Install Guides

• Solaris

• AIX

• Linux

• HP/UX

• Mac/Darwin

 Programming Guide

 Systems Admin Guide

 Topaz Programming Guide

 GemBuilder for C

http://community.gemstone.com/display/GSS64/GemStoneS+64+Documentation

8

Product Distribution

 ftp://ftp.gemstone.com/pub/GemStone64/2.4.4.7

9

Suggested Install Location

 /opt/gemstone/ # root for GemStone-related things

• /opt/gemstone/<productDirectory>/

• Add symbolic link from /opt/gemstone/product

• /opt/gemstone/backups

• /opt/gemstone/bin

• /opt/gemstone/data

• /opt/gemstone/etc

• /opt/gemstone/locks

• /opt/gemstone/log

• /opt/gemstone/Monticello

• /opt/gemstone/product

• $GEMSTONE points here

10

Operating System Configuration

 Shared Memory settings in /etc/sysctl.conf

 Linux:

• kern.shmmax = nnnn # max shared memory segment in bytes

• kern.shmall = nnnn # max 4096-byte pages for shared memory

 Macintosh:

• kern.sysv.shmmax = nnnn # max shared memory segment in bytes

• kern.sysv.shmall = nnn # max 4096-byte pages for shared memory

11

Environment Variables

 See System Administration Guide, Appendix E for full list

• GEMSTONE # full path to product

• /opt/gemstone/product

• GEMSTONE_EXE_CONF # dir or file for executable config files

• /opt/gemstone/etc

• GEMSTONE_NRS_ALL # settings for default directory, log files, etc.

• #dir:/opt/gemstone#log:/var/log/gemstone/%N_%P.log

• GEMSTONE_SYS_CONF # dir or file for system-wide config file

• /opt/gemstone/etc/system.conf

• upgradeLogDir # used for upgrade to new GS/S version

• PATH should include $GEMSTONE/bin

12

Keyfile Capabilities

 Use of GemStone/S 64 Bit requires a "keyfile" that identifies

allowed capabilities (with "Web Edition" no-cost license limits)

• Max repository size (unlimited)

• Max object count (unlimited)

• Max concurrent logins (unlimited)

• Expiration date (none)

• Machine type (Linux or Macintosh)

• Max shared page cache (2 GB)

• Max CPUs used (2)

• Allow use of traversal buffer in GCI-to-Gem communications (no)

• Required for use of GemBuilder for Smalltalk (for VA Smalltalk and Cincom Smalltalk)

• Allow Gems on non-Stone machine (no)

13

Keyfile Location

 $GEMSTONE/seaside/etc/gemstone.key is Web Edition keyfile

• Also available from http://seaside.gemstone.com/etc/

 Location specified in config file to override default

• KEYFILE = $GEMSTONE/sys/gemstone.key

14

Config File

 Default is at $GEMSTONE/data/system.conf

• GEMSTONE_SYS_CONF environment variable specifies another location

 Four (4) required configurations (included in default file)

• DBF_EXTENT_NAMES = $GEMSTONE/data/extent0.dbf;

• STN_TRAN_FULL_LOGGING = FALSE;

• STN_TRAN_LOG_DIRECTORIES = $GEMSTONE/data/, $GEMSTONE/data/;

• STN_TRAN_LOG_SIZES = 100, 100;

 Suggest a file such as /opt/gemstone/etc/seaside.conf

• Include only non-default configurations

• Above plus KEYFILE

15

Agenda

 Installation

 Architecture

 Tools

 Backup/Restore

 Class Versions

 Debugging

 Concurrence

 Background Processing

 Repository-wide Garbage Collection

16

Architecture:

What is Different about GemStone?

17

GemStone Enhancements over Typical Smalltalk

 Large object space

• Object space is (in practice) limited only by disk (not by RAM)

 Transactions

• Related updates can be grouped in an ―all-or-nothing‖ transaction

 Persistence

• Transactions are immediately recorded to a log file

 Multi-user

• Thousands of virtual machines can interact with a single object space

 Multi-machine

• Virtual machines can be on hundreds of hosts

18

Complexities

 Large object space

• Disk is slow, so cache recently-used objects in RAM

 Transactions

• Group changes to support roll-back (abort)

 Persistence

• Recover recent changes in event of crash

 Multi-user

• Isolate each user‘s view (repeatable read)

• Manage concurrency conflicts (avoid simultaneous updates to same object)

• Manage object and class versions (when are updates visible to others?)

 Multi-machine

• Coordinate object updates between machines

19

Programming Issues

 Garbage collection (GC)

• Temporary objects local to virtual machine

• Persistent objects in shared object space

 Large collections

• Iterating can be slow

• Use indexes to improve performance

 Transactions

• Maintaining obsolete views can be expensive

• Object versions (different views of same object can see different values)

• Class versions (schema updates are not immediately applied to objects)

• Avoiding unnecessary concurrency conflicts

20

Architecture:

How it is Done

21

GemStone Architecture

 Repository

• Disk-based ―image‖ holds objects and other data

• Made up of extents (files or raw partitions)

• Objects are on 16k pages

 Gem Process(s)

• Single Smalltalk virtual machine

 Stone Process

• Manages concurrency

 Shared Page Cache

• Fast cache of pages from repository

• Managed by SPC Monitor process

 Other Processes

• GC Gems, Symbol Gem, AIO Page Server, Free Frame Server, etc.

Repository

Gem

Stone

SPC

SPC

Monitor

22

Repository and Extent(s)

 Holds persistent GemStone objects (i.e., the “image”)

 Made up of 1 to 255 extents of up to 32 terabytes each

• On-demand grow

• Pre-grow to maximum size

 Each extent is composed of 16 KB pages

• Root Pages

• Object Table Pages

• Data Pages

• Commit Record Pages

• Free OID List

• Free Page List

 Page ID designates extent and offset

 Statistics: FreePages (Gem vs. Stone)

Repository

23

System Startup

 „startstone‟ command

• Command line arguments for database name and other configurations

• Finds and opens all extents specified in required config file

• Finds and opens transaction log specified in required config file

• Starts Shared Page Cache (SPC) Monitor process (which allocates SPC)

• Starts other processes

• AIO Page Server(s)

• Free Frame Server(s)

• Symbol Gem

• GC Admin Gem

• Reclaim Gem(s)

• Restores missing transactions if last shutdown was not clean (i.e., crash)

• Waits for requests from Gems (login, lock, commit, etc.)

24

Shared Page Cache

 Typical database challenge: disk is slow

 In-RAM cache of pages from repository

 Gem(s) may “attach” (or lock) in-use Frames

 Frame may contain a “dirty” page

 Async IO Page Server(s) write to repository

 Reuse frame only if it is unattached and clean

 Free Frame List

• Maintained by SPC Monitor

• Might be incomplete

• Gem might be forced to scan cache

 Free Frame Server(s) scan for unattached & clean

Repository

SPC

16 KB

Frame

Frame #5

Frame #7

Frame #8

Free Frame List

25

Shared Page Cache Statistics

 Shrpc

• FreeFrameCount

• GlobalDirtyPageCount

• LocalDirtyPageCount

• TargetFreeFrameCount

• TotalAttached

 Pgsvr

• FramesAddedToFreeList

 Gem, Stn

• AttachDelta

• AttachedCount

• FramesFromFindFree

• FramesFromFreeList

• LocalPageCacheHits

• LocalPageCacheMisses

• NonSharedAttached

• TimeInFramesFromFindFree

26

Gem Types

 Linked Gem

• Application loads GemStone C Interface

(GCI) library into its process space

• GCI library contains Gem code and runs in

Application‘s OS process space

 Remote Procedure Call (RPC) Gem

• Application loads GCI library into its process

space

• GCI library asks NetLDI process to start Gem

process

• Gem process can be on same or different

host as application

• Additional communications overhead

• Reduced risk of application corrupting Gem

Application &

GCI Library

Gem

OS Process

Application &

GCI Library

Gem

TCP/IP

OS Process 1

OS Process 2

27

One-Machine Process Locations (Linked Gem)

Application

& GCI

Library
Gem

Stone

SPC

Repository

Stone Host

28

One-Machine Process Locations (RPC Gem)

Application

& GCI

Library

Gem

Stone

SPC

Repository

Stone Host

NetLDI

29

Two-Machine Process Locations (Gem on Stone Host)

Application

& GCI

Library

Client Host

N

E

T

W

O

R

K

Gem

Stone

SPC

Repository

Stone Host

NetLDI

30

Two-Machine Process Locations (Gem Remote from Stone)

Application

& GCI

Library

Gem

Gem Host

Remote SPC

Page

Server

N

E

T

W

O

R

K

NetLDI

Stone

SPC

Repository

Stone Host

Page

Server

NetLDI

31

Three-Machine Process Locations

Application

& GCI

Library

Client Host

N

E

T

W

O

R

K

Gem

Gem Host

Remote SPC

Page

Server

N

E

T

W

O

R

K

NetLDI

Stone

SPC

Repository

Stone Host

Page

Server

NetLDI

32

Gem Startup

 Gem process started (if RPC)

• Linked Gem started with Application

• RPC Gem started by NetLDI based on request from Application (via GCI)

 Application requests login

• Application provides Stone host and name to Gem through GCI library

• Gem contacts Stone and is assigned a session ID and a database view

• Gem connects to SPC on local machine

• Stone asks NetLDI on Gem host to start SPC Monitor if needed

• Application provides user ID and password to Gem through GCI library and

Gem validates user based on lookup in database

 Login complete

• Gem now waits for requests from GCI

• Application submits requests to GCI for Smalltalk execution or objects

33

Architecture:

Database View and Commit Records

34

Database View and Commit Record

 On login, Gem has a database view

 Object Table

• Object ID (OID) == Object Oriented Pointer (OOP)

• Map to Page (offset in an Extent)

• Each view is based on a single Object Table

 Each commit creates a Commit Record

• Reference to unique Object Table

• List of modified objects (Write Set)

• List of Shadowed Pages

246 10343

247

248

10343

-1

Object Table

Object ID Page ID

Object Table Reference

Write Set

Shadowed Pages

35

Commit Records

 There is always at least one database view, or Commit Record (CR)

 On login, a Gem is given the most recently created Commit Record

 Other Gems can share the same Commit Record (login or abort)

 Each (non-empty) commit creates a new Commit Record

 An abort moves a Gem to the latest Commit Record

 Oldest CR may be disposed of if it is not referenced

 Another commit creates another Commit Record

Gem1

CR1 CR2 CR3

Gem2

login login
commitabort commit

36

Commit Record Backlog

 Here we have two Gems and two Commit Records

 Additional commits create more Commit Records (maybe many!)

 Intermediate CRs cannot be disposed of if older CR is referenced

• This can be a major performance issue — a large CR Backlog is bad!

 Problems with excess Commit Records

• They take space in SharedPageCache and/or Repository

• They slow down new commit processing

• They delay garbage collection

Gem1

CR2 CR3

Gem2

CRn

commit

…….

37

SigAbort

 Important to avoid excessive CR Backlog

 Signal requesting an abort (SigAbort) sent to a Gem if and only if:

1. Gem is referencing the oldest Commit Record

2. Gem is not in transaction

3. CR Backlog is above configured value

 If Gem responds quickly to SigAbort, good!

 Stone can dispose of oldest unreferenced CR(s)

Gem1

CR2 CR3

Gem2

CRn

abort

…….

SigAbort

38

LostOtRoot

 If a SigAbort was sent to a Gem and it was ignored for X minutes

• X is configurable, with default of one (1)

 Stone will revoke the Gem‟s database view (Commit Record)

 Stone will send Gem a signal: LostOtRoot (Lost Object Table Root)

• Any object access will give an error

 Stone can dispose of oldest unreferenced CR(s)

 Gem must abort to get a new Commit Record (or logout)

Gem1

CR2 CR3

Gem2

CRn…….

LostOtRoot

abort

39

Transaction State vs. Mode

 Transaction state

• In – commit attempt is allowed (might succeed or fail)

• Out – commit attempt is not allowed and will always give an error

 Transaction mode

• #autoBegin – always in a transaction with a stable view

• #manualBegin – can be in or out, but always a stable view

• #transactionless – can be in or out, stable view only when in transaction

#autoBegin #manualBegin #transactionless

Always in

Stable view in

Stable view out N/A

Can get SigAbort

Can get SigFinish

Safe for GBS

40

Transaction Control

 System abortTransaction

• Abort, losing any existing changes and obtain the most recent Commit Record

• New transaction state:

• ‗In transaction‘ if transaction mode is #autoBegin

• ‗Out of transaction‘ if transaction mode is #manualBegin or #transactionless

 System beginTransaction

• Abort, losing any existing changes and obtain the most recent Commit Record

• Enter the ‗in transaction‘ state (for all transaction modes)

 System commitTransaction

• If commit succeeds, new transaction state:

• ‗In transaction‘ if transaction mode is #autoBegin

• ‗Out of transaction‘ if transaction mode is #manualBegin or #transactionless

• If commit fails, see next slide …

41

Failed Commit

 Reasons for a commit failure

• Another Gem has a lock (read or write) on an object we modified

• An object we modified was modified in a Commit Record after we got our view

 Impact of commit failure

• Update to most recent Commit Record

• No longer on prior Commit Record, so database view is updated; but …

• Still have all locally modified objects

• New database view does not change local modifications of persistent objects

• Still in transaction

• But any further commit attempt will fail

• Gem will need to abort before any subsequent commit can succeed

• Abort will lose all local modifications of persistent objects

• May wish to copy modifications into other objects before abort

• Could reapply changes after abort and attempt another commit

42

Agenda

 Installation

 Architecture

 Tools

 Backup/Restore

 Class Versions

 Debugging

 Concurrence

 Background Processing

 Repository-wide Garbage Collection

43

Tools

44

Tools

 Traditional

• GemBuilder for Smalltalk (GBS)

• Topaz

• Visual Statistics Display (VSD)

• Transaction log analysis scripts

 Built using other Smalltalks

• GemTools (Pharo)

• Jade (Windows/Dolphin)

 Web

• tODE

• WebTools

45

GemBuilder for Smalltalk

 Smalltalk package that wraps GCI library

• Cincom Smalltalk (VisualWorks)

• VA Smalltalk from Instantiations (formerly VisualAge Smalltalk from IBM)

 Provides "transparent" replication between server Smalltalk and

client Smalltalk

• Traditionally used to build "rich client" GUI applications

 Tools

• Code browser

• Debugger

• Inspector

• UserProfile editor

• …

 Not available in Web Edition

46

Topaz

 Command-line wrapper for GCI library

 Limited scripting capabilities

• No control flow (loop/conditionals)

 Used extensively by GemStone's internal developers

• Used to load code (see $GEMSTONE/upgrade)

• Used to test server

• Preferred way to report server product bugs

 Primary customer use is for batch jobs

• SystemRepository>>#fullBackupTo:

• SystemRepository>>#markForCollection

 Useful when GUI-based tools are not available

• SSH to production server behind firewall over WAN

47

Visual Statistics Display (VSD)

 Each process records data to shared page cache (SPC)

• Many values exist and are constantly updated (220 for Gems, 272 for Stone)

• Any process attached to SPC can monitor other processes on same host

 $GEMSTONE/bin/statmonitor

• Periodically copies current data to a file for later analysis

• Every production system should be capturing statistics for later analysis

• If Gems are on separate machine from Stone, need additional statmonitors

 VSD application

• $GEMSTONE/bin/vsd contains an X Window System application (Linux/Mac)

• Window version at http://community.gemstone.com/display/GSS64/VSD

 Vital uses

• Performance tuning

• Crash analysis

http://community.gemstone.com/display/GSS64/VSD

48

Transaction Log Analysis Scripts

 All changes to persistent objects take place in a transaction

• Record of each transaction in transaction logs

 Primary use is to replay transactions

• After restore from backup

• Restart after crash

 Scripts are available to search tranlogs

• Traditional use is for bug analysis ("How did that happen!?")

• Recent enhancements for forensic analysis ("Who made that change?")

 System Administration Guide, Appendix H

• $GEMSTONE/bin/printlogs.sh

• $GEMSTONE/bin/searchlogs.sh

49

GemTools

 Pharo-based GUI application

• Uses Squeak's FFI interface to interact with GCI library

• Pharo is used to provide GUI (primarily with OmniBrowser)

• No support for object replication—pretend that Pharo Smalltalk doesn't exist

 Tools

• Code browser, Monticello browser, Metacello browser

• Workspace, Debugger, Inspector

• Backup/restore menus

 Closely tied to GLASS

• Use of OB means many round-trips to server for each action

 Download from http://seaside.gemstone.com/downloads.html

http://seaside.gemstone.com/downloads.html

50

Jade

 Windows-only stand-alone 1 MB executable build with Dolphin

• Works with all GemStone/S versions (32-bit and 64-bit)

• Does not require any server code to be pre-loaded

• Optimized for slow network (most operations require only one round-trip)

 Tools

• Code browser, Monticello browser

• Workspace, Debugger, Inspector

 Download from http://seaside.gemstone.com/jade/

http://seaside.gemstone.com/jade/

51

tODE – the Object (Centric) Development Environment

 Seaside-based web application

• Runs in Pharo and GemStone

• Non-traditional approach to tools

 Tools

• Code browser, Metacello browser

• Workspace, Debugger, Inspector

 Web Resources

• Code at http://code.google.com/p/tode/

• Mailing list at http://groups.google.com/group/tode_st

http://code.google.com/p/tode/
http://groups.google.com/group/tode_st

52

WebTools

 Javascript application

• Uses async Json queries to lightweight web server in GemStone

• Not a Seaside application; available in any GemStone/S 64 Bit 3.0 database

 Tools

• Code browser

• Statmonitor file graphing

 Extensible with plug-in tools

 Code distributed in $GEMSTONE/examples/www/

53

Agenda

 Installation

 Architecture

 Tools

 Backup/Restore

 Class Versions

 Debugging

 Concurrence

 Background Processing

 Repository-wide Garbage Collection

54

Backup and Restore

55

Documentation

 System Administration Guide for GemStone/S 64 Bit

 Chapter 9: Making and Restoring Backups

56

Types of Backups

 Off-line Extent Copy

 Smalltalk Backup

 On-line Extent Copy

57

Off-line Extent Copy

 Make a copy of extent(s) when system is down.

 Advantages

• Simple to make

• Simple to restore

 Disadvantages

• System must be down

• Copy includes empty space and non-object data

 Recommended for

• Development systems

• Systems that are regularly down due to usage patterns and hardware needs

58

Smalltalk Backup

 Evaluate 'SystemRepository fullBackupTo: aFilePath'

• Alternative method: #'fullBackupCompressedTo:'

• Other methods support multi-file backups to limit file size (for tape backups!)

 Advantages

• Traditional means

• Compact size contains only objects

• Restore results in minimal extent size(s)

 Disadvantages

• Can take significant time to create backup

• Gem process holds a transaction for initial phase

• Restore process more time-consuming

 Recommended for:

• Smaller systems that have not experienced any of the disadvantages

59

Hybrid: On-line Extent Copy

 Process

1. Suspend checkpoints

2. Copy extent(s)

3. Resume checkpoints

 Advantages

• On-line

• Most work is done by OS file copy (as compared to Smalltalk backup)

• Can take advantage of hardware features (split a mirror)

 Disadvantages

• More complex to create & restore

• Backup might be invalid if checkpoints resumed too early

 Recommended for:

• Larger systems

60

Recomendation

 Validate backup file

• copydbf extentOrBackup /dev/null

 Test your restore process

 Keep transaction logs associated with backup

61

Agenda

 Installation

 Architecture

 Tools

 Backup/Restore

 Class Versions

 Debugging

 Concurrence

 Background Processing

 Repository-wide Garbage Collection

62

Class Versions

63

Documentation

 GemStone/S 64 Bit Programming Guide

 Chapter 9

• Class Creation,

• Versions,

• and Instance Migration

64

Class Creation

 Send #'subclass:…' message to object that will be superclass

 What happens in traditional Smalltalks if class already exists?

• Create new class object

• Copy and recompile methods to new class

• Find all instances of old class

• Create new instances of new class for each instance of old class

• Copy values in instance variables from old to new instances

• Perform #'become:'-like action to swap old and new instances

• Perform #'become:'-like action to swap old and new classes

• Garbage collect to remove old class and instances

 Can't do this in GemStone

• Scanning large object space would take too long

• Modifying objects in other session's views would violate isolation

65

Class Versions

 Every class is part of a ClassHistory collection

• Others are related but may have different name and/or schema

• Might be only one Class in ClassHistory

 Object>>#'isKindOf:' checks superclasses and ClassHistory

 Most compiled references to a Class will be updated automatically

• Methods do not reference a Class, but a SymbolAssociation with a value

 Methods are typically copied and recompiled by tools

• Low-level subclass creation does not automatically create methods

 Instances are left with old class until migrated explicitly

66

Instance Migration

 Could leave instances of old class as-is

• Provide method(s) that answer default values for missing instance variables

 Could migrate all at once

• Make instance migration part of general application upgrade process

• Application down-time

• Find all instances and migrate them in one or more transactions

 Could do lazy migration

• Modify code to migrate before any message is sent to old object

• Simple if limited lookup path(s) to object

• Elaborate approach of replacing methods on old class to migrate self

• Could still have background process to finish migration as soon as possible

67

Agenda

 Installation

 Architecture

 Tools

 Backup/Restore

 Class Versions

 Debugging

 Concurrence

 Background Processing

 Repository-wide Garbage Collection

68

Debugging

69

Debugging – Printing/Logging

 System class>>#'addAllToStoneLog:'

 GsFile class

• #'stdout'

• #'stderr'

• #'gciLogClient:'

• #'gciLogServer:'

 TranscriptProxy class>>#'show:'

• Global Transcript points to TranscriptProxy class

• Creates an ObjectLogEntry

• Will send to client if client has registered a ClientForwarder

• Otherwise sends GsFile class>>#'gciLogServer:'

 Store value in global

• UserGlobals at: #'James' put: 'got to step #1 at ' , DateTime now printString

70

Debugging – Halt and Breakpoints

 Object>>#'halt'

• Signals a Halt exception

• Might be trapped by Exception handlers

• Typically reports exception back to GCI client (Topaz, GemTools, etc)

• Similar behavior for most other Error exceptions

 Set breakpoint in method

• Does not require modifying source code

• Applies only to current Gem

• Require tool support (or GsNMethod>>#'setBreakAtStepPoint:')

71

Remote Debugging

 DebuggerLogEntry (subclass of ObjectLogEntry)

• Application may persist a continuation with an error

• DebuggerLogEntry class>>#'createContinuationLabeled:'

• Tools may support opening a debugger on persisted continuation

72

Agenda

 Installation

 Architecture

 Tools

 Backup/Restore

 Class Versions

 Debugging

 Concurrence

 Background Processing

 Repository-wide Garbage Collection

73

Concurrence

74

Documentation

 GemStone/S 64 Bit Programming Guide

 Chapter 7

• Transactions and Concurrency Control

75

Concurrency Issues

 GemStone prevents simultaneous updates to same object

• Each session starts with a database view

• First to commit wins

• Other sessions will get a TransactionConflict error if objects have changed

• This is "optimistic locking"

 Short transactions reduce likelihood of this "physical" conflict

• Abort just before making change and then commit immediately

• Note that value might change based on abort!

76

Logical Conflict

 Seaside framework (mostly) addresses physical conflict problem

• Abort performed immediately before executing callbacks and rendering page

• TransactionConflict error is handled by abort then retrying (up to 10 times)

• Odds are that another attempt will succeed

 Application is responsible for detecting "logical" conflicts

• User may enter data based on old view of database

• Abort may switch to newer view with different data than presented to user

• Seaside will do abort and then replace existing (possibly changed) value with

user's entry

77

Explicit Locking

 Pessimistic Locking

• System class>>#'writeLock:' (and friends)

• If you are successful in obtaining a write lock, then no other session may

commit a change to that object

• Your view might be out-of-date, however, and you need an abort/commit

before modifying the locked object

78

Reduced Conflict Classes

 Certain overlapping modifications to an object might be okay

• Multiple sessions adding objects to a collection

• Adding, changing, or removing the value at different keys in a Dictionary

• Incrementing a counter

 GemStone provides classes that avoid well-defined conflicts

• RcCounter

• RcIdentityBag

• RcQueue

• RcKeyValueDictionary

 Trade-off of slight overhead for avoiding conflicts

79

Agenda

 Installation

 Architecture

 Tools

 Backup/Restore

 Class Versions

 Debugging

 Concurrence

 Background Processing

 Repository-wide Garbage Collection

80

Background Processing

81

Session View

 A single VM (Gem) has a single database view

• A forked Process (via ExecutableBlock>>#'fork') runs in the same view

• A commit or abort by any Smalltalk Process in the session will change the view

for all Smalltalk code running in the Gem

 Typical Smalltalk patterns will not work

• Fork a Process to handle a web request using a unique ODBC connection

• Fork a Process to handle a long-running background task using a unique DB

• Fork a Process to handle web requests and edit code in foreground

 Need a separate Gem for each independent activity

82

Background Processing In GemStone

 Define a 'cron' job for regular maintenance (backup and MFC)

 Start a dedicated Topaz session for background jobs

• Multiple "producers" add tasks to a well-known collection (e.g., an RcQueue)

• Single "consumer" takes tasks from queue, and processes them

• Gem does only one task at a time, in a transaction

• On TransactionConflict error, abort and start over

83

Agenda

 Installation

 Architecture

 Tools

 Backup/Restore

 Class Versions

 Debugging

 Concurrence

 Background Processing

 Repository-wide Garbage Collection

84

Repository Garbage Collection

85

Types of Repository Garbage Collection

 Page reclamation

• Recovering space taken by shadow objects

• Compacting space by copying objects from partially filled pages

 Full markForCollection

• Scan the entire repository for any references to every object

 Epoch GC

• Scan the objects modified during a time period (epoch) for new references to

new objects

 Off-line GC

• Scan the entire repository for any references to objects found to be

unreferenced by an off-line scan

86

Garbage Collection Vocabulary

 AllUsers

• The instance of UserProfileSet that acts as a root for the object graph

 Live object

• An object referenced directly or indirectly from AllUsers

 Dead object

• An object defined in the object table and present on a page, but not live

• A dead object may be referenced by a dead object (but not a live object)

• A dead object may reference both live and dead objects (but it doesn‘t matter)

• The object ID (OOP) and the space of a dead object may be reclaimed

 Shadow object

• When an existing object is modified, it is placed on a new page

• The old page is preserved until no more views reference the old object

• The space can be reclaimed (through page compaction), but not the object ID

87

Summary of Repository-Wide Garbage Collection

 MFC Gem builds possible dead set

• Mark live objects

• Object table sweep

• Record possible dead

 Voting to remove from possible dead set (managed by Stone)

• Current gems vote based on current references at next commit or abort

• GcGem votes on behalf of all commit records since start of MFC

 Cleanup

• Finalizing for selected objects

• Page reclamation

• Return of pages and object IDs to free pool

88

Mark Live Objects

 Find connected objects

• Start with AllUsers as the root of the object graph (the original ‗live‘ object)

• Perform a ‗transitive closure‘ visiting each object referenced from a live object

• Add each live object to a live object set

 Gem: ProgressCount

• Number of live objects found so far

• When this statistic drops back to zero, this step is done

 Configuration

• Set mfcGcPageBufSize

 Process is very I/O and CPU intensive

• Read object table page and data page for every live object

• Same page might be read multiple times

89

Object Table Sweep

 Subtract live objects from all objects to get possible dead set

 Gem: ProgressCount

• Begins at zero (clearing from previous step)

• Count of possible dead objects

• When this statistic drops back to zero, this step is done

90

Record Possible Dead

 Pass possible dead set to stone

 MFC Gem‟s task is now done

 Stn: PossibleDeadSize

• Rough approximation of possible dead set size

91

Voting by Existing Gems

 As each logged-in Gem does an abort or commit

• Stone passes list of possible dead to Gem for voting

• Gem scans its private memory for references to the objects

• Referenced objects are voted ‗not dead‘

 Gem Statistic

• VoteNotDead

 Stn Statistics

• GcPossibleDeadSize

• GcVoteUnderway

• SessionNotVoted

 Garbage collection can stall here

• Voting happens only at the next abort or commit

• A quiet Gem that does not abort or commit will not vote

92

Voting by GcGem („Finalize Voting‟)

 Original live object set is based on view at beginning of MFC

 Any commit since MFC began could have created a reference

 A „write set union‟ of all commit records since MFC began is kept

 GcGem takes possible dead set and searches for new references

 Stn statistics:

• GcPossibleDeadWsUnionSize

• GcSweepCount

• GcPossibleDeadSize

• DeadNotReclaimedSize

 Gem statistic:

• ProgressCount

 At end, we have a definitive dead object set

93

Cleanup: Finalizing

 GcGem reads each object in the dead set

 Certain dead objects require special cleanup

• Collections with indexes

• Compiled methods

 Gem: ProgressCount

 Stn: GcPossibleDeadSize

 Stn: DeadNotReclaimed

94

Cleanup: Reclamation

 GcGem activity

 For each page containing a dead object

• In a transaction, copy all live objects on that page to a new page

• This leaves only shadow objects (the current version is on a new page), dead

objects, and free space on the old page

 Note that the old page might still be referenced from a view

• Shadow objects need to be kept around as long as they are part of a view

 Stn statistics

• GcReclaimState

• GcReclaimNewDataPagesCount

• DeadObjsCount

• FreePages

• GcPagesNeedReclaimSize

• DeadNotReclaimedSize

95

Cleanup: Return to Free Pool

 When commit record for reclaim activity is no longer referenced

 Page IDs and Object IDs associated with that reclaim are added to

the free list

96

Questions?

 James Foster

• jfoster@vmware.com

• http://programminggems.wordpress.com/

mailto:jfoster@vmware.com
http://programminggems.wordpress.com/

