
IWST 2013

Program of the 5th edition of
the International Workshop on Smalltalk

Technologies
In conjunction with the

21th International Smalltalk Joint
Conference

Annecy, september 2013

IWST 2013 Forewords

ii

IWST 2013 Forewords

IWST, standing for International Workshop on Smalltalk Technologies, is a European Smalltalk User
Group (ESUG) Conference joint event.

IWST was launched in 2009, in Brest, during the 17th ESUG Conference. The second edition took
place in Barcelona, the third edition in Edinburgh in 2011 and the fourth edition was held in 2012 at the
heart of historic Ghent. IWST 2013 is the fifth edition, and takes place in highly touristic Annecy.

ESUG gathers groups of professionals and hobbyists who share an interest in the Smalltalk program-
ming languages and related technologies.

IWST was set up from a will to promote research activities - namely academic creative work under-
taken on smalltalk use, and more generally on object technologies - apart from the ESUG main event.

The goal of the workshop is to create a forum around advances or experience in Smalltalk. IWST
contributes to triggering discussions and exchanges of ideas. Contributions are welcome on all aspects,
theoretical as well as practical, of Smalltalk related topics such as:

• Aspect-oriented programming,

• Meta-programming,

• Frameworks,

• Interaction with other languages,

• Implementation,

• New dialects or languages implemented in Smalltalk,

• Tools,

• Meta-modeling,

• Design patterns,

• Experience reports

This edition is an obvious milestone in the IWST’s history; five years of existence demonstrates the
viability of this event and the interest of the community. This edition is also the first one to receive an
ACM SIGPLAN in-cooperation label.

Loı̈c Lagadec and Alain Plantec, co chairs

iii

IWST 2013 Program Commitee

iv

IWST 2013 Program Commitee

Program Committee

Loic Lagadec (chair) LabSTICC UMR 6285 / MOCS - ENSTA Bretagne
Alain Plantec (chair) LabSTICC UMR 6285 / MOCS - Universite de Bretagne Occiden-

tale
Etien Anne LIFL - universite Lille 1
Gabriela Arevalo Facultad de Ingenieria - Universidad Austral
Alexandre Bergel University of Chile
Johan Fabry PLEIAD, University of Chile
Tudor Girba CompuGroup Medical Schweiz
Mickaël Kerboeuf LabSticc, Universite de Bretagne Occidentale
Mariano M.Peck Ecole des Mines de Douai
Jorge Ressia SCG, University of Bern
Bastian Steinert HPI, Software Architecture Group
Hervé Verjus University of Savoie
Erwan Wernli SCG, University of Bern
Hernan Wilkinson 10Pines

v

IWST 2013 Table of Contents

vi

IWST 2013 Table of Contents

Table of Contents

Full papers . 9

Virtual Smalltalk Images: Model and Applications . 11
Guillermo Polito, Stéphane Ducasse, Luc Fabresse and Noury Bouraqadi

Towards a flexible Pharo Compiler . 27
Clement Bera and Marcus Denker

Early exploring design alternatives of smart sensor software with Model of Computation
implemented with actors . 37

Jean-Philippe Schneider, Zoé Drey and Jean-Christophe Le Lann

Representing Code History with Development Environment Events . 45
Martı́n Dias, Damien Cassou and Stéphane Ducasse

Language-side Foreign Function Interfaces with NativeBoost . 53
Camillo Bruni, Luc Fabresse, Stéphane Ducasse and Igor Stasenko

Pragmatic Visualizations for Roassal: a Florilegium . 65
Mathieu Dehouck, Stéphane Ducasse, Usman Bhatti and Alexandre Bergel

Short papers . 71

Identifying Equivalent Objects to Reduce Memory Consumption . 73
Alejandro Infante, Juan Pablo Sandoval Alcocer and Alexandre Bergel

vii

IWST 2013 Selected papers

viii

IWST 2013 Selected papers

Part I

Full papers
The goal of the workshop is to create a forum around advances or experience in Smalltalk and to trigger
discussions and exchanges of ideas. Participants are invited to submit research articles.
Full papers are long research papers with description of experiments and of research results.

9

IWST 2013 Selected papers

10

Virtual Smalltalk Images: Model and Applications

G. Polito
RMoD Project-Team, Inria

Lille–Nord Europe
Institut Mines-Telecom, Mines

Douai.
guillermo.polito@mines-douai.fr

S. Ducasse
RMoD Project-Team, Inria

Lille–Nord Europe
stephane.ducasse@inria.fr

L. Fabresse
Institut Mines-Telecom, Mines

Douai.
luc.fabresse@mines-douai.fr

N. Bouraqadi
Institut Mines-Telecom, Mines Douai.

noury.bouraqadi@mines-douai.fr

Abstract
Reflective architectures are a powerful solution for code
browsing, debugging or in-language process handling. How-
ever, these reflective architectures show some limitations in
edge cases of self-modification and self-monitoring. Mod-
ifying the modifier process or monitoring the monitor pro-
cess in a reflective system alters the system itself, leading to
the impossibility to perform some of those tasks properly. In
this paper we analyze the problems of reflective architectures
in the context of image based object-oriented languages and
solve them by providing a first-class representation of an im-
age: a virtualized image.

We present Oz, our virtual image solution. In Oz, a virtual
image is represented by an object space. Through an object
space, an image can manipulate the internal structure and
control the execution of other images. An Oz object space
allows one to introspect and modify execution information
such as processes, contexts, existing classes and objects. We
show how Oz solves the edge cases of reflective architectures
by adding a third participant, and thus, removing the self-
modification and self-observation constraints.

1. Introduction
In a Smalltalk environment, an image is a memory dump
(snapshot) of all the objects of the system, and in particular
all of the classes and methods at the moment of the dump. An
image acts as a cache with preloaded packages and initial-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
IWST’13 September 9-13, 2013, Annecy, France
Copyright c© 2013 ACM [to be supplied]. . . $10.00

ized objects. When the system is launched it takes an image
as input and executes it from the place where the program
counter was saved on previous save.

Smalltalk images are defined using a self-describing re-
flective architecture. Fully reflective architectures such as
the one of CLOS [BGW93, Rho08] or Smalltalk [GR89]
provide a simple and yet really powerful solution to de-
velop tools such as full IDEs, code browsers, refactoring
engines and debuggers [Riv96, Duc99]. Reification of the
stack in addition to all the structural language elements al-
lows one to manipulate program control flow as exempli-
fied with modern web application frameworks such as Sea-
side [DLR07, GKVDHF01]. Indeed, a reflective system can
be understood, changed and evolved using its own con-
cepts and features. In addition, reflection is based on the no-
tion of causal connection between the system and its meta-
level [Mae87].

However, reflective architectures present some limita-
tions. The causal connections and meta-circularities makes
difficult to change core parts of the system[DSD08]. For
example, the array iteration method Array»do: is used by
both user applications (the base level) and system infrastruc-
ture such as the compiler or debugger (the meta level). This
method presents a causal connection in the sense that it is
used by the tools in the process of changing/recompiling
itself. Because of this causal connection, breaking such a
method impacts not only in the final user code, but also on
the libraries and tools that are essential in the system, caus-
ing the system to crash.

Reflective architectures also suffer from the observer ef-
fect when doing analysis on the system. That is for example,
observing its own running processes and their execution, or
its consumed memory alters the observed element. Iterating
the memory to count the amount of instances of a class, can
create more objects in the iteration process. The manipula-

tion of processes can be done only from an active process
and thus, there is no possibility to activate directly a process
from the language.

To avoid this effect, the execution of these reflective op-
erations is normally delegated to the virtual machine (VM).
The virtual machine executes code atomically for the im-
age’s point of view. However, modifying the virtual machine
to introduce new features is a tedious task, and there are not
many developers experts in the area.

In this paper we propose to leverage this problems by
creating an image meta-level. Our proposal is to move the
control of this reflective operations from the virtual machine
to another image. That is, an image will contain another
image, and be able to reason about and act upon it. We call
this image virtualization.

Contributions. The contribution of this paper is the in-
troduction of Smalltalk Virtual Images to ease image anal-
ysis and evolution that is usually challenging in a reflec-
tive system (cf. Section 2). We describe Oz, an object
space [CPDD09] based solution that we implemented on top
of Pharo providing Smalltalk image virtualization (cf. Sec-
tion 3). We also document the implementation details of both
the language library and the virtual machine extensions we
wrote (cf. Section 4). Then, we present some exemplar appli-
cations of this concept demonstrating that it solves the initial
challenges (cf. Section 5). Finally, we discuss the solution
and related work before concluding (cf. Section 6).

2. Reflective Architectures: Recurring
Problems and State of the Art Solutions

Programming and evolving Pharo’s core, several limitations
and problems appear because of its reflective architecture. In
the following subsections we illustrate some of these recur-
ring problems, and describe their state of the art solutions.

2.1 Case 1: System Self-brain Surgery
Modifying Pharo’s core parts from the system itself is a crit-
ical task. Core parts of a reflective system are in use while
trying to modify them, generating an effect also known as
self-brain surgery [CPDD09]. Doing so wrongly can put the
system into an irrecoverable state since it may impact on el-
ements that the system uses at the same time for running and
applying the modifications. For example, that happens when
changing methods such as Object»at: or Array»at:, adding new
instance variables to core classes such as Process or Class, or
even modifying tools like the debugger or browser. Introduc-
ing a bug at these places may make the system unusable, for-
bid the possibility to rollback the change and force a restart
resulting in the loss of all the changes made.

Another issue while doing self-brain surgery on a system
is that large system modifications cannot be performed in
an atomic way. They should be split into several smaller
changes, each of which may be critical on its own. Moreover,
those changes also require to be applied in a specific order to

be safe. Respecting a safe order constrains the development
process, and therefore, restricts the developers working on
the core of the system.

A typical case of self-brain surgery in Pharo is the modifi-
cation of the debugger. The system automatically opens the
debugger when an error occurs. The user performs actions
with it like changing a method, evaluating an expression or
even skip the error and proceed. However, making a mistake
when rewriting a debugger’s method may cause an irrecover-
able infinite recursion. Indeed, an error launches the debug-
ger, the trial for launching the debugger fails because of its
bugged method, this debugger’s failure leads to try to launch
another debugger, and so on. Because of this infinite recur-
sion, the user never gets the control back and cannot solve
the original problem.

Many different problems may arise when doing self-brain
surgery and for each of them, many ad-hoc solutions or
workarounds have been proposed. For example, instead of
modifying directly the debugger, a developer may make a
copy of it to work on. Then, the system debugger can be used
to debug and test the one in development. Once finished, the
new debugger can replace the original.

The current Pharo distribution includes within its libraries
an emergency evaluator to solve some self-brain surgery
cases. Whenever an error occurs and the normal graphical
user interface cannot be displayed because of that error, the
control falls back to the emergency evaluator. The emer-
gency evaluator is a simple tool with almost no graphical
dependencies used to evaluate expressions and revert the last
method submission. However, it depends on the compiler,
the event machinery and the collection library, and thus,
breaking any of those dependencies makes the emergency
evaluator unusable.

Finally, bootstrapping a system [PDF+on] or recreating
it from scratch solves partially the problems of self-brain
surgery. These processes create new images in an atomic
way, overcoming many of the self-brain surgery limitations.
However, the development process in that case gets inter-
rupted: the surgery fixes should be introduced inside the
specification of the image, the new image containing the fix
is built from scratch, the current working image has to be
discarded, and the development should be continued in the
new image. Ongoing changes during former development,
which reside in the old image, should be either ported to the
new image or discarded.

Requirement. A solution for self-brain surgery problems
should include the possibility to apply atomic changes in
the system, keep the development process as interactive as
possible and scope the impact of side-effects.

2.2 Case 2: Uncontrolled Computations
From time to time a Pharo image can become unresponsive.
This problem may be caused by a bug in the processes
priority configuration i.e., a never ending process with high

priority does never give chance to run to other processes, and
thus, the user cannot regain control to modify it because the
user interface process is blocked. Currently, the only existing
solution to regain control in such situations is the usage of
the interrupt key. The interrupt key is a key combination that
when pressed forces the running image to pause one of its
processes.

On the one hand, when the virtual machine detects this
situation, it signals a semaphore that should awake a handler
process inside the image to handle this situation. On the
other hand, the current implementation of the interrupt key
in Pharo uses the input event process to detect if the given
key is pressed. This process runs at a fixed priority of 60 (of
a total of 80).

The current state of the art of interrupting presents the
two following problems:

Interruption runs on the same level as other processes.
When the interruption succeeds, it activates a process
that is supposed to suspend the problematic process and
give back the control to the user. However, the activa-
tion of this interruption process suspends the problematic
process placing it in its corresponding suspended queue,
making it undistinguishable from other processes. Then,
the interrupting process must guess which was the pro-
cess that was interrupted.

Bad process configurations induce starvation. Since the
event handling process, which implements interruption,
runs at a priority of 60, processes with higher priority
may never be interrupted. Then, higher priority processes
can avoid interruption and make lower processes starve.
One solution to this problem is changing the configura-
tion of the interruption process to make it run in the high-
est priority. However, there may be cases in which the
process configuration needs a process with higher prior-
ity than the input event process.

Requirement. There is a need for a solution allowing the
non intrusive and non constrained control over processes
execution.

2.3 Case 3: System Recovery
Working in an image based environment implies that our
subject of work are the objects inside it instead of source
code files. Every change in the system is expressed in terms
of side-effects which are directly applied on its objects.
Direct object manipulation provides as main advantage an
immediate feedback to the user of the system.

However, manipulating the same image over and over
again may leave it in a corrupt state, emerging when an im-
age does suddenly not start. In such cases, all the informa-
tion related to previous work sessions stays stored in a bi-
nary format inside the image file, including both application
data (living domain objects) and code (methods and classes
written during development). The recovery of all this infor-

mation from a failing image is a tedious task, without a con-
clusive solution.

A typical example of corrupting an image is the wrong
manipulation of the Pharo startup mechanism. The Pharo
startup mechanism is implemented in the language itself. At
startup time the system iterates the startup list and sends
the startUp: message to each of the objects it holds. Each
object in the startup list handle their own startup. The startup
runs before giving control to the user. Language libraries
can access and configure the startup list, providing a flexible
and easily extensible configuration mechanism. However,
the accessibility of this feature leads to misuse and errors.
Resources initialized on startup can provoke irrecoverable
errors if not well handled. For example, resources using low
level code may cause the current operating system process
crash and quit. Under this kind of errors, the image quits on
startup without providing the user a way to recover the work
he did in previous sessions.

The system changes log appears as a first solution for sys-
tem recovery. The changes log is a file storing the opera-
tions performed on the image, including all changes made
to class and methods definitions and executed expressions.
When available, it can be accessed from other images to re-
store the work done. This log allows the user to recover ap-
plication code written between sessions, but not the recovery
of application data stored inside the image.

Another ad-hoc solution that appeared to solve such a
problem is to run the failing image with the virtual machine
in debug mode. When debugging the system through the
virtual machine, the developer must deal with low level code
and work at the bytecode level. In exchange, he can control
completely the execution: failing statements can be skipped,
the image can get finally initialized and the he can obtain
control to fix the bug and recover his work.

Requirement. The system recovery should be a high level
process, easily accessible, and allow both recover applica-
tion code and data.

3. The Oz model for Virtual Images
A virtual Smalltalk image is an image living inside another
Smalltalk image. The container image, the host, observes the
virtual image and has complete control over it. The main
idea is that such tasks difficult to perform due to the reflec-
tive architecture are handled by the host image. We trans-
form the critical "self-brain surgery" tasks into safe "brain
surgery" ones, by delegating them to another Smalltalk im-
age.

Oz is a virtual image model and implementation based
on object spaces [CPDD09]. Casaccio et al. sketched object
spaces to solve self-brain surgery. When doing self-brain
surgery, the image under modification becomes a patient of
a surgeon image. The patient is included inside the surgeon
as an object space. Through this object space, the image gets
manipulated by the surgeon, fixed and finally awoken.

In Oz, an object space is a subsystem of another image.
It is an object graph composed by two main elements: a
full Smalltalk image (cf. Section 3.1) and a "membrane" of
objects controlling that image (cf. Section 3.2). The image
containing an object space is its host, while the object space
is its guest.

Figure 1 shows a host image with two tools (ToolA and
ToolB) interacting with an object space. The object space
is enclosed by the dotted line. It contains a guest image
and a membrane. The host tools interact with the membrane
objects, while the membrane objects manipulate the objects
inside the image.

Host

ToolA

ToolB

Object Object SpaceSmalltalk ImageCaption:

Guest

Figure 1. A host image contains an object space, repre-
sented as the region enclosed by the dotted line; the object
space contains a guest Smalltalk image with its own object
graph; the membrane is the gray region between the guest
image and the dotted line; the tools inside the host interact
with the objects in the membrane to manipulate the image.

In Oz we extended the object space model to apply self-
brain surgery (cf. Section 3.3) and control rigorously both
communication and execution (cf. Sections 3.4 and 3.5). In
this section we describe the concepts and design principles
guiding our solution for virtual Smalltalk images.

3.1 The Guest Image
The guest image inside an object space, as any other
Smalltalk image, contains its own classes and its own spe-
cial objects such as nil, true, false, processes and contexts. If
we save this image on a filesystem, we can execute it as any
other image. Indeed, it contains all objects that are necessary
to run on its own dedicated virtual machine. Additionally,
the guest image does not need to include any extra libraries
or code for the host to include it. However, an image must
fulfill a contract, as described in Section 3.6.

An object space’s image contains an object graph satis-
fying the transitive closure property. That is, all objects in-
side the image reference only objects inside the same image.
There are no references from the inside of the object space
to its host. This is a key property to allow an image to be

deployed both as an object space or as a standalone image
on a dedicated virtual machine in a transparent way.

The object space enforces the isolation of its enclosed
image in several ways. First, its membrane controls that
no objects from the host are injected into the guest image.
Second, it enforces that both guest and host images do not
share any execution context. Finally, Pharo has no ability to
forge object references [HCC+98] and therefore, the guest
image can only refer to objects that are given to it explicitly,
and not create arbitrary object references.

3.2 The Membrane
The membrane controls and enables the communication be-
tween the host and the guest objects. It encloses and encap-
sulates the guest image. This membrane is made up of ob-
jects which provide meta-operations to reason about and act
upon the guest image. The host’s objects cannot access the
guest image but through the membrane’s objects. The mem-
brane objects are part of the host image and provided as a
library in it.

The membrane contains objects to manipulate both the
guest image as a whole and its inner objects individu-
ally. To manipulate the image as a whole, it provides one
façade [GHJV95] object, the objectSpace. The objectSpace is
a first-class object reifying the object space. Figure 2 shows
the main methods conforming the API of an objectSpace ob-
ject in Oz. To manipulate the individual objects inside the
guest image in a controlled way, the objectSpace object pro-
vides mirrors, as described in Section 3.3.

3.3 Mirrors for Object Manipulation
The manipulation of objects inside the object space image
cannot be achieved with a traditional message send mecha-
nism. In the normal case, when a message send is performed,
the virtual machine takes the selector symbol of the message
and lookups in the class hierarchy method dictionaries of
the receiver until it finds a method with the same (identical)
selector. In our scenario, both host and guest images con-
tain their own Symbol class and symbol table. Then, when
performing a cross image-message send the method lookup
mechanism takes a selector symbol from the host, lookups
into the guest receiver’s hierarchy, and finally fails because
the selector in the guest is (while maybe equals) not identi-
cal to the selector in the host. Also, forcing a cross image-
message send by using a guest’s selector can leak host refer-
ences to the guest: activating a guest method from the host
gives the guest complete access to the host through the this-
Context special variable which reifies the stack on-demand.

To encapsulate and control the basic object manipulation,
the object space façade object provides mirrors [BU04].
Mirrors hide the internal representation of the objects inside
the objectspace and expose reflective behavior. The guest is
not aware of the existence of these mirrors.

A basic object mirror provides the following operations:

"accessing"
nilObject
falseObject
trueObject
specialObjectsArray

classNamed:
classes
compactClassAt:
compactClassAt:ifNone:
globalNamed:

"conversion"
fromLocalByteString:
fromLocalByteSymbol:
fromLocalCharacter:
fromLocalCompiledMethod:

toLocalByteString:
toLocalByteSymbol:
toLocalCharacter:
toLocalCompiledMethod:

"process manipulation"
createProcessWithPriority:doing:
installAsActiveProcess:

transferControl

ObjectSpace

Figure 2. The API of an object space

Field Manipulation. Operations to get and set values in
both instance variables and variables fields of an object,
such as at: and at:put:, or instVarAt: and instVarAt:put:.

Size calculation. Operations to get the size of an object
expressed in the amount of instance variables and amount
of variable fields, such as fixedSize and variableSize.

Class access. Operations to introspect and modify the be-
havior of an object, such as getClass and setClass:.

Special Objects Tests and Conversions. Operations to test
if an object is a primitive1 object such as nil, true or false,
and to convert it to its equivalent in the host image, such
as isNilObject, isSmallInteger or asBoolean.

All objects inside an object space and reachable by ref-
erence can be retrieved by host’s objects through the object
space facade and mirrors. There is no limitation nor restric-
tion for object access. The host manipulates all objects in a
homogeneous way through their mirrors.

Additionally, specific mirrors are provided to manipu-
late objects with a specific format and/or behavior such as
Class, Metaclass, MethodDictionary, CompiledMethod, Method-
Context, and Process.

1 we mean by primitive objects those that represent the simplest elements in
the language

3.4 Controlled Execution
An object space’s execution is fully controllable from the
host. The host can introspect and modify an object space pro-
cesses via mirrors to obtain information such as the method
currently on execution, the values on the stack or the current
program counter. Besides from those reflective operations,
an object space provides also operations to suspend, resume
or terminate existing processes, and to install new ones.

The object space provides fine-grained control on the
guest execution. An object space controls the amount of
CPU used by the guest image. This way, a virtual image can
be customized for scenarios like for example testing, CPU
usage analysis, or old hardware simulation. For example, it
may restrict its processes to run during only 300 millisec-
onds every second for either.

3.5 Controlled Communication
As explained in Section 3.1, an objectspace is an isolated
object graph in the sense that from the guest image there is
no way to reach host objects. However, the opposite relation
is possible: the host can manipulate completely the object
space.

The communication mechanism between host and guest
images is based on the injection of objects into the ob-
ject space. The host may install from simple literal objects
such as strings or numbers, up to more complex objects like
classes, methods. An object space permits to send messages
to objects inside itself by injecting process with the specified
code. Injected processes may have any arbitrary expression.
The membrane objects can retrieve the result from the pro-
cess’ context once the execution is finished.

The object space membrane ensures that object injection
honors the transitive closure property. On one side, literal
objects from the host are automatically translated to their
representation in the object space. An object space imple-
ments the operations to transform literal objects (numbers,
strings, symbols, some arrays and byte arrays) from and to
its internal representation.

On the other side, non literal objects are actually not
created in the host and injected in the object space. Non
literal objects are directly created in the object space, so the
task of injecting the new object inside a graph is safe.

3.6 A Guest Image Contract
The creation and set up of an object space is done by putting
in place the guest image and setting up the correspond-
ing membrane. The guest image can be created either from
scratch or by loading an existing image file. One way to cre-
ate a guest image from scratch is for example by bootstrap-
ping it given a specification. On the other side, loading an
existing image file consists in putting the object graph from
that image inside the object space.

Once the guest image is available, the host only sees it
as a big object graph, not being able of differentiate the ob-

jects inside it. Then, to be able to manipulate the internals
of the object space, the objectSpace and mirror objects must
be configured with information about the internal represen-
tation of the guest image objects. They need the following
kind of information in order to discover the rest of the guest
image:

Special instances. In order to write some tools, and do
comparisons and testing methods, the object space needs
to know how to reach special instances such as nil, true
and false.

System Dictionary. For the object space give access to
classes, traits and even global variables installed in its
inner image, a description on how to reach them must be
provided.

Processes. It is important, for execution manipulation (cf.
Section 3.4), that the image provides access to its pro-
cess machinery. The accessibility to processes in running,
suspended or even terminated state is vital, while it is
also desirable the access processes in failing state for pro-
cess monitors and debuggers. Direct access to the process
scheduler and the priority lists is also desirable.

Literal Classes Mappings. Communication between host
and guest require the translation of literal objects from
and to the internal representation of the guest image (cf.
Section 3.5). To achieve this, the object space needs to
know the classes and internal format of those objects and
thus, a mapping specifying the transformation must be
provided. For example, the object space should know
which are the classes inside the guest image that cor-
respond to the host ByteString and SmallInteger ones to
transform them if necessary.

Special classes internal representation. In order to ma-
nipulate some special objects in the object space, such as
classes, metaclasses, processes and contexts, the internal
representation should be given. Their internal representa-
tion includes both the amount of instance variables and
variable fields, their size in memory, and their meaning.
For instance, a class object format must include which
are the instance variables containing the class name and
the instance variables list.

4. Oz implementation in the Pharo Platform
We implemented Oz2 in the Pharo 2.0 platform. Our solution
virtualizes Pharo images and provides, as already described,
the ability to fully control their object graph, inject objects
in a safe way and control their execution.

Our implementation includes a language side library re-
sembling the membrane objects and an extension to the
Stack virtual machine. We decided to extended the Stack vir-
tual machine to avoid dealing with the complexity of the Just

2 The code can be found under http://www.smalltalkhub.com/#!/~Guille/
ObjectSpace with licence MIT

In Time (JIT) compiler. The virtual machine extensions, de-
scribed in Sections 4.5 and 4.6, include the addition of three
primitives (load an image into the object memory, transfer
the execution to an object space, and install an image in an
object space as host) and the modification of the function in
charge of the context switch mechanism.

In this section, we explain the details of our solution’s
implementation. We intend this section to document both
the features a programming platform (language and virtual
machine) should provide to build this kind of solution and
the way our solution uses those features.

4.1 Pharo current infrastructure
To implement Oz we had to understand and the Pharo infras-
tructure (virtual machine and libraries), to transform it from
a single-image to a multi-image solution. We describe the
elements that we consider as key to understand our solution.

The special objects array. Pharo virtual machine holds the
state of the image that is currently running into a spe-
cial objects array object. The special objects array is a
simple array object referencing special objects the virtual
machines accesses and manipulates directly. For exam-
ple, it references objects such as the boolean and numeric
classes or the nil, true and false instances. Some elements
inside the special objects array are optional, and there-
fore, may not be found in a Pharo image. We detail the
contents and semantics of the Pharo special objects array
in appendix A.

Concurrency through green threads. In Pharo, only one
kernel (operating system) thread is used to execute code.
Pharo processes are first class objects which share the
same memory space as any other object in the sys-
tem. The virtual machine internally handles and sched-
ules them. Processes scheduled using this approach are
also called green threads . Green threads provide pro-
cess schedulling without native operative system sup-
port while limiting the proper usage of modern multicore
CPUs.
Particularly, the special objects array contains a process
scheduler object and its corresponding process objects,
implementing the green threads.

Single interpreter assumptions. The virtual machine code
makes many assumptions given the fact that the system
is single-image. For example, the interpreter relies on
constants and static variables, forbidding the ability to
run two complete separate virtual machine interpreters
in the same process. In addition, many of the virtual
machine plugins such as the socket plugin handle their
own internal state and store it outside of the image. This
way, plugins state is shared for the whole virtual machine
process, and would also be shared among the virtual
images.

4.2 Oz Memory Layout
We decided to make an object space share the same memory
space (the object memory) used by the host. Then, objects
from both host and guest are mixed in the object memory,
and not necessarily contiguous, as shown in Figure 3. This
decision is funded on minimizing the changes made to the
virtual machine, because of its complex state. Our decision,
while easing the development of our solution, has the fol-
lowing impact on it:

Reuse memory handling mechanisms. We use the same
existing memory infrastructure as when no object spaces
are used. Existing mechanisms for allocating objects or
growing the object memory when a limit is reached can
be reused transparently by our implementation.

Simplify the object reference mechanism. References
from the membrane objects to the guest image objects
are handled as simple object references. No extra support
from the virtual machine was developed in this regard.

Shared garbage collection. Since objects from the host
and guest are mixed in the object memory, and their
boundaries are not clear from the memory point of view,
the garbage collector (GC) is shared between them. Every
GC run must iterate over all their objects, increasing its
time to run.

Observer’s effect on an object space’s memory. Analyz-
ing and controlling an object space’s memory still suffers
from the observer’s effect in our solution: every action
taken by the host on the object space modifies the shared
memory, and therefore alters the process. Because of this,
an object space’s memory cannot be properly analyzed.

4.3 Oz Mirror Implementation
Our implementation of mirrors manipulate the objects inside
an object space by using already existing primitives. There
was no need to implement new primitives in the virtual
machine since the existence of two primitives:

Execute a given method on an object. Given a method,
it is possible to execute it on an object, avoiding
method lookup in the object. In the current virtual ma-
chine, this primitive is implemented in the method re-
ceiver:withArguments:executeMethod: of the Compiled-
Method class. This method receives as arguments the ob-
ject on which the primitive will be executed, an array of
arguments, and the method to execute.

Execute a primitive on an object. It is possible to send
a message to an object, so a primitive is executed on
the receiver. This primitive is implemented in Pharo’s
ProtoObject class as tryPrimitive:withArgs: . It receives
as argument the number of the primitive and an array or
arguments.

Since the primitive tryPrimitive:withArgs: executes the
given primitive on the receiver of the message, and we want

our mirrors to avoid cross image-message sends (cf. Sec-
tion 3.3), we combine both primitives. We use primitive re-
ceiver:withArguments:executeMethod: to execute the primitive
method tryPrimitive:withArgs: on the object from the guest im-
age, avoiding the cross image-message send and executing
directly the primitive on the given object.

CompiledMethod
receiver: aGuestObject
withArguments: { aPrimitiveNumber . anArrayOfArguments }
executeMethod: (ProtoObject >> #tryPrimitive:withArgs:)

Figure 4. Combining the two primitives to execute a primi-
tive on a guest object

Our mirror system contains three main mirrors regarding
the internal representation of objects: a mirror for objects
containing just object references such as Array or OrderedCol-
lection, a mirror for objects with non-reference word fields
such as Float or WordArray and a last one for objects with byte
fields such as ByteArray or ByteString. In addition to them, we
provide specialized mirrors for some kind of objects. The
list of current mirrors we provide is the following: Object-
Mirror, ByteObjectMirror, WordObjectMirror, ClassMirror,
MetaclassMirror, ClassPoolMirror, MethodDictionaryMir-
ror, MethodMirror, ContextMirror, ProcessSchedulerMirror
and ProcessMirror.

4.4 Oz Process Manipulation and Scheduling
Processes inside an object space are first class objects as well
as the ones inside Pharo. They are exposed to the host im-
age as mirrors. Resuming/activating a process consists in re-
moving it from the suspended list in its scheduler and put
it as the active process in its image. Suspending a process
consists in putting the process in the corresponding suspen-
sion list of its process scheduler. The ProcessMirror and the
ProcessSchedulerMirror handle the schedulling in the guest
image and keep the consistency in the object space process
scheduler.

Using Oz, we can also create and install new processes
inside an object space given a code expression. The creation
of a process requires the creation of a compiled method with
the code (bytecode) corresponding to the desired expression
and a method context. The compiled method with the code
to run is obtained by compiling the expression in the host
and creating an object space compiled method. The object
space compiled method is then provided with the compiled
bytecode and its corresponding literals.

4.5 Oz Context Switch between Images
An object space has, as well as the host image, its own spe-
cial objects array. Thus, for consistency, the execution of
a piece of code inside an object space must use the cor-
responding special objects. For example, when evaluating
the expression ’someObject isNil’ inside an object space, the

nil
host

false
host

true
host

nil
guest

false
guest

true
guest

'hi!'
host

...

The Object Memory

Figure 3. Objects from the host and guest are mixed in the object memory. In this figure, after the nil, true and false host
instances, follow the corresponding ones of the guest, which can in order be followed by objects of the host, like the string ‘hi’.

object referenced by the variable someObject must be com-
pared against the nil object of the executing object space. We
modified the virtual machine to be able to perform a con-
text switch between the host image and the object space, and
making it sensitive to the corresponding special objects ar-
ray. We kept the single threaded nature of the vm, so the
context switch between images puts the running image to
sleep and awakens the new one. There are no concurrency
problems between the different images.

Our modified VM has a special reference to the host’s
special objects array. To let an object space run, we imple-
mented a primitive to explicitly give control to the object
space by installing its special objects array. This primitive
puts the current running process to sleep, changes the spe-
cial objects array to the one request, and finally awakens the
process installed as active in the object space. Figure 5 con-
tains the VM code implementing this primitive.

Our implementation also supports the possibility to pro-
vide a controlled window of execution to an object space.
The current VM possesses a heartbeat thread it uses to pro-
voke a context switch every 20 milliseconds. Our imple-
mentation uses the heartbeat mechanism to pause the cur-
rent object space process and give the control back to the
host. We changed the VM function checkForEventsMayCon-
textSwitch: adding the code in Figure 6, to use the behavior
implemented in the primitiveResumeFromASpecialObjectsAr-
ray: primitive.

4.6 Creating an Oz object space
An object space can be created either from scratch or by
loading an existing image. Loading an existing image was
implemented as a virtual machine primitive, because the
image snapshot is actually a memory snapshot and therefore,
easier to handle at VM level. This primitive, implemented
with the code shown in Figure 7, reads the snapshot file,
puts all objects into the object memory, updates the object
references to make them coherent and finally returns the
special objects array of the loaded image.

On the other side, creating an object space from scratch
can be implemented as a bootstrap of the system, following
the process defined in [PDF+on]. The object space provides
the createObjectWithFormat: method to create an object re-
specting the given format but with an anonymous class, so
we can consider it as a "classless" object. This method is
used in the first stage of the bootstrap process, when no

classes are available in the object space image yet, to cre-
ate the nil instance (cf. Figure 8) and the first classes (cf.
Figure 9). Later, when the classes are available, those ob-
jects are set their corresponding ones by using the setClass:
message.

4.7 Oz Image Contract and Membrane Configuration
Section 3.6 states the need for establishing a contract be-
tween an image and the object space in order to build the ob-
ject space membrane. This contract has, in our understand-
ing, two complementary parts: the services an image pro-
vides, and the format to access them.

Image services. In order for the host to manipulate the im-
age inside an object space, the guest image must provide
the required services. Those services are exposed as ob-
jects to the host, and their availability is given by how
reachable they are in the object graph. For example, to
get the list of classes inside an object space or to manipu-
late its processes, its system dictionary and its processor
should, respectively, be reachable in the image’s object
graph.
Given a Pharo image from the current distribution, the
reachability is constrained by its special objects array.
The special objects array is the only object directly ac-
cessible of an image, since an image file contains in its
header an explicit reference to it. So far, we understand
the objects served by an image are the ones in the special
objects array (cf. Section 4.1)
The special objects array contains references to many
of the objects the membrane needs: nil, true, false, the
processor, the numeric classes, the System dictionary,
the compact classes, and some but not all literal classes.
However, some elements in the special objects array are
not mandatory in Pharo (cf. Section 4.1). For example,
the System Dictionary may not available and then, there
is no easy way to find all classes in the system.
The current special objects array in Pharo does not pro-
vide all necessary services. It has to be extended to sup-
port, for example, the recovery of process objects sus-
pended because of an error. These processes currently are
only referenced by graphical debuggers, and thus not eas-
ily reachable from the special objects array.

primitiveResumeFromASpecialObjectsArray:
aSpecialObjectsArray

| oldProc activeContext newProc |

"we put to sleep the current running process"
oldProcess := self activeProcess.
statProcessSwitch := statProcessSwitch + 1.
self push: instructionPointer.
self externalWriteBackHeadFramePointers.
activeContext := self

ensureFrameIsMarried: framePointer
SP: stackPointer.

objectMemory
storePointer: SuspendedContextIndex
ofObject: oldProc
withValue: activeContext.

"we replace the special objects array"
self replaceSpecialObjectsArrayWith: aSpecialObjectsArray.

"we awake the process"
newProc := self activeProcess.

self externalSetStackPageAndPointersForSuspendedCon-
textOfProcess: newProc.

instructionPointer := self popStack

replaceSpecialObjectsArrayWith: newSpecialObjectsArray
objectMemory specialObjectsOop: newSpecialObjectsArray.
objectMemory nilObject:

(objectMemory splObj: NilObject).
objectMemory falseObject:

(objectMemory splObj: FalseObject).
objectMemory trueObject:

(objectMemory splObj: TrueObject).

"Reinitialize VM state to point to the correct nil object"
method := objectMemory nilObject.
messageSelector := objectMemory nilObject.
newMethod := objectMemory nilObject.
lkupClass := objectMemory nilObject.

Figure 5. VM functions written in Slang to transfer control
to a virtualized image

The image format. Given an object in the guest image, its
enclosing object space requires its internal representation
and format to manipulate it correctly. We mean by in-
ternal representation its size, its amount of variable and
fixed slots, the kind of and size of those slots, and in some
cases their meaning.
First, the semantics associated to the special objects array
and its contents should be provided. That is, what does
each index of the array mean.

((hostSpecialObjectArray ~~ objectMemory nilObject)
and:

[objectMemory specialObjectsOop ~~ hostSpecialObjectArray])
ifTrue: [

self primitiveResumeFromASpecialObjectsArray:
hostSpecialObjectArray.

].

Figure 6. Additions to VM function checkForEventsMay-
ContextSwith: written in Slang to give back control to the
host image.

Second, the guest image may differ from the host Pharo
image. Then, the object space needs to make a correlation
between the literal classes inside both host and guest to
transform instances from and to the object space format.
The classes subject to this correlation in our current im-
plementation are ByteString, ByteSymbol, Array, SmallInte-
ger, Character and Association. Such correlation is done
by providing the corresponding transformation methods.
Finally, some mirrors must manipulate the internal state
of special objects, and thus they must know their internal
structure. The membrane configuration must provide the
meaning of the instance variables of such special objects
i.e., the ProcessSchedulerMirror needs the index of the
activeProcess and processList, and the ClassMirror needs
the index of the superclass, method dictionary and name
instance variables.

4.8 Non Implemented Aspects
For the sake of completion, we document in this subsection
the aspects that have not been yet implemented in our solu-
tion.

Our current implementation does not handle properly
the release of resources such as files or network connec-
tions (sockets). In Pharo, the finalization and release of such
resources is made in the language side. Given the single-
threaded nature of our solution, an image running can pro-
voke the garbage collection of any object in the memory
even if they belong to another image, since the object mem-
ory is shared by all images (cf. Section 4.2). However,
garbage collection only activates in the current implementa-
tion the finalization process that belongs to the running im-
age. The finalization processes of other images are ignored.
Then, resources may leak, since they can be garbage col-
lected but not properly finalized and released.

Another yet not implemented aspect regarding resources
are global limitations imposed by the virtual machine. For
example, the virtual machine memory is accounted globally
without distinguish the usage per image; the virtual machine
network plugin accounts and limits the amount of open sock-
ets in a global way. In this sense, an image can use resources
indiscriminately and restricting their use to other images i.e.,

primitiveLoadImage
| headerlength bytesRead newImageStart rootOffset old-

BaseAddress dataSize rootOop fileObject |

"get the reference to the file object"
fileObject := self stackValue: 0.

"Where will we put the new objects"
newImageStart := objectMemory startOfFreeSpace.

"read image header"
self readLongFrom: fileObject.
headerlength := self readLongFrom: fileObject.
dataSize := self readLongFrom: fileObject.
oldBaseAddress := self readLongFrom: fileObject.
rootOffset :=

(self readLongFrom: fileObject) - oldBaseAddress.

"seek into the file the start of the objects"
self seek: headerlength onFile: fileObject.

"grow the heap in the ammount of the image size"
objectMemory growObjectMemory: dataSize.

"read the file into the free part of the memory"
bytesRead := self

fromFile: fileObject
Read: dataSize
Into: newImageStart.

"tell the vm the free space is now after the loaded objects"
objectMemory advanceFreeSpace: dataSize.

"update the pointers of the loaded objects"
self

updatePointersForObjectsPreviouslyIn: oldBaseAddress
from: newImageStart
until: newImageStart + dataSize.

"return the special objects array"
rootOop := newImageStart + rootOffset.
self pop: 2 thenPush: rootOop.

Figure 7. Implementation of primitive primitiveLoadImage
that loads an image snapshot into the object memory written
in Slang

if there is a total of 100 sockets and an image opens 70, the
rest of the images in the system have to share the 30 left.

5. Image Virtualization solving the Reflective
Architecture Problems

Virtualizing an image, and therefore obtaining fine grained
control on it from the language has several applications.

theNil := objectSpace createObjectWithFormat: nilFormat.
objectSpace nilObject: theNil.

Figure 8. Bootstrapping an object space: Creating a "class-
less" nil when there are no classes

metaclassMirror := objectSpace
createClassWithFormat: classFormat
forInstancesOfFormat: metaclassFormat.

metaclassClassMirror := objectSpace
createClassWithFormat: metaclassFormat
forInstancesOfFormat: classFormat.

metaclassMirror setClass: metaclassClassMirror.
metaclassClassMirror setClass: metaclassMirror.

Figure 9. Bootstrapping an object space: Creating "class-
less" Metaclass and Metaclass class when there are still no
classes

In this section we describe some applications that solve
common problems, although our solution is not constrained
to them.

5.1 Image Surgery and Emergency Kernel Layer
Oz solves typical image surgery scenarios [CPDD09] such
as the self-modification of the kernel and the recovery of bro-
ken images, described in sections 2.1 and 2.3. Using object
spaces turn self-brain surgery into simple brain surgery, by
introducing the role of the surgeon with a host image. Bro-
ken images can be loaded inside an object space to be subject
of surgery in an atomic way. The host contains high-level
tools such as a browser, an object inspector and a debugger
to manipulate the object space and ease the surgery.

By using virtual images we can also provide a rich and
interactive Emergency Kernel: whenever an error occurs in
the running Pharo system because of self-brain surgery, the
system can give the control to a fallback image. This fallback
image is a full image containing the failing image inside
an object space, and tools to act upon it, so it can perform
surgery to solve the problem. The fallback image is to the
system an Emergency Kernel which compared to the orig-
inal emergency evaluator solution, has no dependencies on
the failing image and therefore avoids its self-brain surgery
problems. After the surgery, the main system can get back
the control and continue running.

5.2 Controlled Interruption
Image virtualization can provide a solution for process in-
terruption (cf. Section 2.2). When an object space is inter-
rupted, its host obtains the control letting the interrupted ob-
ject space untouched. This way, the interruption process has
its two problems solved:

Non intrusive interruption. The state of the object space
when the interruption took place remains unchanged. The
problematic process can be found easily since is not
moved to a suspended list, but remain as active process
in the asleep object space.

Non restricted interruption. Since interruption is handled
by the host image, there are no restrictions on which pro-
cesses can be interrupted by the interrupt key combina-
tion.

5.3 Sandboxing
Oz can be used to sandbox applications by limiting the
scope of side effects and the CPU consumption.

For example, running the some test suites of Pharo lets
the system in a dirty state because of side effects. For ex-
ample, the test case MCWorkingCopyTest unloads the Monti-
celloMocks package and reloads it again as Monticellomocks,
without respecting the original casing. Oz leverages this
problem by isolating the side effects inside the object space.
The host stays unaffected and can analyze the test results
when they finish to run. Finally, the object space under test-
ing can be discarded while the user can continue working
with the host.

6. Discussion and Related Work
In the field of virtualizing reflective object oriented lan-
guages and their runtimes, we did not find so far a work
directly related with our solution. There is, however, work
on isolation related with some parts of it, specially with the
internal low level implementation details.

The memory layout we implemented has, as we stated in
sections 4.2 and 4.8, many advantages regarding the devel-
opment of our solution, but presents also many drawbacks.
Sharing the object memory between different images implies
that there is no need for special support on cross-image ref-
erences, and that the existing memory management in the
virtual machine can be used transparently. However, this so-
lution forbids the host to analyze the object space memory
usage, and has an impact on the GC.

J-Kernel [HCC+98] and Luna [HvE02] present a solution
similar to ours regarding the memory usage. They are Java
solution for isolating object graphs with security purposes.
In them, each object graph is called a protection domain.
All protection domains loaded in a system, and their objects,
share the same memory space.

The J-Kernel enforces the separation between domains
by using the Java type system, the inability of the Java lan-
guage to forge object references, and by providing capability
objects[Lev84, MRC03, Spo00] enabling remote messaging
and controlling the communication. This same separation in
Luna [HvE02] is achieved by the modification of the type
system and the addition in the virtual machine of the remote
reference concept. In our solution, the separation is given by

the same inability to forge object references and the mem-
brane objects that control the communication.

KaffeOS [BHL00] makes an explicit domain separation
in memory by using different memory heaps in the virtual
machine. They enforce domain separation by using memory
write barriers. Cross-domain references become cross-heap
references, and thus, they need special virtual machine sup-
port.

Regarding the threading model (cf. Section 4.5), a Pharo
virtual machine has single threaded execution with green
threads (cf. Section 4.1). In our implementation, their usage
allowed us to reuse the current virtual machine schedulling.
We also use a green thread approach to schedule image
execution. All images are executed in the same single thread,
one at a time. This model simplifies our implementation
because it avoids concurrency problems between host and
guest images.

KaffeOS presents a model where resource accounting is
handled at the level of the virtual machine. Our solution
aims to control and account resources at the language level.
However, our implementation is not complete yet on this
front.

Worlds [WK08] scope side-effects of Javascript programs
by reifying the notion of its state. Our solution takes a similar
approach by reifying images. In our solution, images have
a notion of their own state just like Javascript Worlds, but
include also its manipulation from the outside.

In Kansas [SWU97], Smith et al. present a similar solu-
tion to the emergency kernel (cf. Section 5) for a collabora-
tive environment based on Self [US07]. Smith et al. classify
errors in three different categories: benign errors are the ones
the user can solve by itself by using the typical debugging
tools in the main system, fatal errors are those ones that pre-
vent the system to continue, they lead to a system crash, and
finally, a third category of errors that makes the system un-
usable from itself but does not cause a system crash. These
last errors are trapped and solved in a separate alive envi-
ronment, equals to Kansas, but called Oz, which does not
fully share the same code base as the broken system. Once
the problem is solved, users leave Oz and return to Kansas to
continue their work. While Kansas makes focus on collabo-
rative work, it is not addressed in the paper which level of
isolation exist between Kansas and Oz, and what they share
or not. In our work, both the host and guest images have each
one their own and separate kernel, allowing to safely make
changes into the guest image from the host.

The Squeak interpreter simulator [IKM+97, Mir11] was
born as a project to enable the development of the Squeak
image and virtual machine from Squeak itself. With the in-
terpreter simulator, a Squeak virtual machine is programmed
using Squeak objects. The simulator reifies virtual machine
related concepts such as the object memory, execution stack,
interpreter and process schedulling. Thus, the interpreter
simulator allows to load a smalltalk image inside an object

memory instance and manipulate it freely from the host im-
age. Regarding the internal details, the host virtual machine
interprets the object memory instance as a single byte ob-
ject. The host garbage collector does not traverse the graph
inside the simulator object memory avoiding the problems
of sharing the object memory as in Oz. The interpreter simu-
lator has its own reference to the special objects array inside
its object memory, for what no virtual machine changes are
needed. From the external point of view, the interpreter sim-
ulator does not encapsulate properly the objects inside the
object memory nor provides a high-level API for their ma-
nipulation as the membrane present in Oz.

7. Conclusion and Future Work
This paper explores image virtualization for object oriented
reflective systems such as Smalltalk. We present Oz, an ob-
ject space based solution for image virtualization. Oz object
spaces provides services to control and manipulate Smalltalk
images, without enforcing the inclusion of extra libraries
inside them. In particular, Oz object spaces allow image
surgery and the manipulation of an image’s execution from
the language.

Oz object spaces encapsulate and enclose their inner im-
age by creating a membrane of objects responsible for its
communication and control. The membrane is composed by
a façade object which reifies the object space, and mirrors
that control the communication between the host and single
objects inside the object space. This façade and mirrors hide
the internal details of the object space, such as its internal
representation, memory layout or threading model. This en-
capsulation property may allow to implement alternative Oz
object spaces, polymorphic with the current one. For future
research we would like to explore the object space API for
controlling remote images and how it relates to distributed
images.

Oz presents a green thread scheme of execution. It vir-
tualizes processes and avoids concurrency problems by en-
forcing mutual-exclusion of the execution of different im-
ages. As future work, we want to explore the introduction of
operating system threads to take advantage on the latest mul-
ticore CPUs, take control of them through the objectspace
and account their consumed resources through the language.

For future work, we would like to explore Oz as an infras-
tructure for developing customized Smalltalk kernels and
software analysis.

Acknowledgements
This work was supported by Ministry of Higher Education
and Research, Nord-Pas de Calais Regional Council and
FEDER through the Contrat de Projets Etat Region (CPER)
2007-2013.

References
[BGW93] Daniel G. Bobrow, Richard P. Gabriel, and J.L.

White. CLOS in context — the shape of the design.
In A. Paepcke, editor, Object-Oriented Program-
ming: the CLOS perspective, pages 29–61. MIT
Press, 1993.

[BHL00] G. Back, W. Hsieh, and J. Lepreau. Processes in
kaffeos: Isolation, resource management and shar-
ing in java. In 4th USENIX International Sympo-
sium on Operating System Design and Implemen-
tation (OSDI), 2000.

[BU04] Gilad Bracha and David Ungar. Mirrors: de-
sign principles for meta-level facilities of object-
oriented programming languages. In Proceedings
of the International Conference on Object-Oriented
Programming, Systems, Languages, and Applica-
tions (OOPSLA’04), ACM SIGPLAN Notices, pages
331–344, New York, NY, USA, 2004. ACM Press.

[CPDD09] Gwenaël Casaccio, Damien Pollet, Marcus Denker,
and Stéphane Ducasse. Object spaces for safe im-
age surgery. In Proceedings of ESUG International
Workshop on Smalltalk Technologies (IWST’09),
pages 77–81, New York, USA, 2009. ACM digital
library.

[DLR07] Stéphane Ducasse, Adrian Lienhard, and Lukas
Renggli. Seaside: A flexible environment for build-
ing dynamic web applications. IEEE Software,
24(5):56–63, 2007.

[DSD08] Marcus Denker, Mathieu Suen, and Stéphane
Ducasse. The meta in meta-object architectures. In
Proceedings of TOOLS EUROPE 2008, volume 11
of LNBIP, pages 218–237. Springer-Verlag, 2008.

[Duc99] Stéphane Ducasse. Evaluating message passing
control techniques in Smalltalk. Journal of Object-
Oriented Programming (JOOP), 12(6):39–44, June
1999.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-
Wesley Professional, 1995.

[GKVDHF01] Paul Graunke, Shriram Krishnamurthi, Steve Van
Der Hoeven, and Matthias Felleisen. Programming
the web with high-level programming languages.
In Proceedings of ESOP 2001, volume 2028 of
Lecture Notes in Computer Science, pages 122–
136, 2001.

[GR89] Adele Goldberg and Dave Robson. Smalltalk-80:
The Language. Addison Wesley, 1989.

[HCC+98] Chris Hawblitzel, Chi-Chao Chang, Grzegorz Cza-
jkowski, Deyu Hu, and Thorsten von Eicken. Im-
plementing multiple protection domains in java. In
ATEC ’98: Proceedings of the annual conference
on USENIX Annual Technical Conference, pages
22–22, Berkeley, CA, USA, 1998. USENIX Asso-
ciation.

[HvE02] C. Hawblitzel and T. von Eicken. Luna: a flexible
java protection system. ACM SIGOPS Operating
Systems Review, 36(SI):391–403, 2002.

[IKM+97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wal-
lace, and Alan Kay. Back to the future: The story
of Squeak, a practical Smalltalk written in itself.
In Proceedings of the 12th ACM SIGPLAN con-
ference on Object-oriented programming, systems,
languages, and applications (OOPSLA’97), pages
318–326. ACM Press, November 1997.

[Lev84] Henry M. Levy. Capability-Based Computer Sys-
tems. Butterworth-Heinemann, Newton, MA, USA,
1984.

[Mae87] Pattie Maes. Concepts and experiments in compu-
tational reflection. In Proceedings OOPSLA ’87,
ACM SIGPLAN Notices, volume 22, pages 147–
155, December 1987.

[Mir11] Eliot Miranda. The cog smalltalk virtual machine.
In Proceedings of VMIL 2011, 2011.

[MRC03] Todd Millstein, Mark Reay, and Craig Cham-
bers. Relaxed multijava: balancing extensibility
and modular typechecking. In Proceedings of
the 18th ACM SIGPLAN conference on Object-
oriented programing, systems, languages, and ap-
plications, pages 224–240. ACM Press, 2003.

[PDF+on] Guillermo Polito, Stéphane Ducasse, Luc Fab-
resse, Noury Bouraqadi, and Benjamin Van Ry-
seghem. Bootstrapping reflective systems: The case
of pharo. Journal on Science of Computer Pro-
gramming - Special Issue: Smalltalk Based Sys-
tems, 2012, under submission.

[Rho08] Christophe Rhodes. Sbcl: A sanely-bootstrappable
common lisp. In International Workshop on Self
Sustainable Systems (S3), pages 74–86, 2008.

[Riv96] Fred Rivard. Pour un lien d’instanciation dy-
namique dans les langages à classes. In JFLA96.
INRIA — collection didactique, January 1996.

[Spo00] Lex Spoon. Objects as capabilities in squeak, 2000.

[SWU97] Randall B. Smith, Mario Wolczko, and David Un-
gar. From kansas to oz: collaborative debugging
when a shared world breaks. Commun. ACM,
40(4):72–78, April 1997.

[US07] David Ungar and Randall B. Smith. Self. In
Proceedings of the third ACM SIGPLAN confer-
ence on History of programming languages, HOPL
III, pages 9–1–9–50, New York, NY, USA, 2007.
ACM.

[WK08] Alessandro Warth and Alan Kay. Worlds: Control-
ling the scope of side effects. Technical Report RN-
2008-001, Viewpoints Research, 2008.

A. Appendix: The Special Objects Array
In this appendix the present an overview of the special objects array used by the Pharo platform. We present for each of its
indices: (a) the object to be found, (b) if that object is mandatory for the virtual machine and (c) relevant comments. If the
object is not mandatory for the virtual machine, a nil reference will took the place most certainly.

We emphasize in bold the objects required so far in Oz in order to be able to introspect an image. The availability of literal
classes can be replaced by the availability of the system dictionary and the required class names in the membrane configuration.

Array Index Required in
Pharo Stack
VM core

Object Details

1 x nil
2 x false
3 x true
4 x Scheduler association
5 Bitmap class Required only for graphics.
6 x SmallInteger class
7 x ByteString class
8 x Array class
9 System dictionary Elemental: without it, Oz cannot reach all

classes in the image.
10 x Float class
11 x MethodContext class
12 BlockContext class This class does not exist any more in

Pharo.
13 x Point class
14 LargePositiveInteger class
15 Display class Required only for graphics.
16 x Message class
17 CompiledMethod class Not used by the Virtual Machine
18 Low space semaphore Used to signal low space
19 x Semaphore class.
20 x Character class
21 x doesNotUnderstand: selector
22 x cannotReturn: selector
23 Low space process The Virtual Machine uses this internally.

Not used by the language.
24 x Special selectors array An array of the 32 selectors compiled as

special bytecodes.
25 x Character table An array of the 255 Characters in ascii

order.
26 x mustBeBoolean selector
27 ByteArray class
28 Process class Not used by the Virtual Machine.
29 x Compact classes array An array of up to 31 classes whose in-

stances have compact headers.
30 Delay semaphore Used if schedulling timers only.
31 Interrupt semaphore Used for VM side interruption.
32 Float prototype Not used by the Virtual Machine.
33 LargePositiveInteger prototype Not used by the Virtual Machine.
34 Point prototype Not used by the Virtual Machine.

Array Index Required in
Pharo Stack
VM core

Object Details

35 x cannotInterpret: selector Used in case method dictionary in a class
is nil.

36 MethodContext prototype Not used by the Virtual Machine.
37 x BlockClosure class
38 BlockContext prototype Not used by the Virtual Machine .
39 x External objects array Array of objects referred by external code.
40 Mutex Not used by the Virtual Machine.
41 LinkedList for overlapped calls in CogMT Used by another Virtual Machine imple-

mentation.
42 Finalization Semaphore
43 LargeNegativeInteger class
44 ExternalAddress class Used for FFI calls.
45 ExternalStructure class Used for FFI calls.
46 ExternalData class Used for FFI calls.
47 ExternalFunction class Used for FFI calls.
48 ExternalLibrary class Used for FFI calls.
49 x aboutToReturn:through: selector Used to notify of unwind contexts.
50 x run:with:in: selector For objects as methods usage.
51 Immutability message Not used in Pharo.
52 FFI errors array Not used by the Virtual Machine.
53 Alien class Used for FFI callbacks.
54 invokeCallback:stack:registers:jmpbuf: selec-

tor
Used for FFI callbacks.

55 UnsafeAlien class Used for FFI callbacks.
56 WeakFinalizer class. Used in Weak finalization.

IWST 2013 Selected papers

26

Towards a flexible Pharo Compiler

Clément Béra
RMOD - INRIA Lille Nord Europe

clement.bera@inria.fr

Marcus Denker
RMOD - INRIA Lille Nord Europe

marcus.denker@inria.fr

Abstract
The Pharo Smalltalk-inspired language and environment
started its development with a codebase that can be traced
back to the original Smalltalk-80 release from 1983. Over
the last years, Pharo has been used as the basis of many
research projects. Often these experiments needed changes
related to the compiler infrastructure. However, they did not
use the existing compiler and instead implemented their own
experimental solutions. This shows that despite being an im-
pressive achievement considering its age of over 35 years,
the compiler infrastructure needs to be improved.

We identify three problems: (i) The architecture is not
reusable, (ii) compiler can not be parametrized and (iii)
the mapping between source code and bytecode is overly
complex.

Solving these problems will not only help researchers to
develop new language features, but also the enhanced power
of the infrastructure allows many tools and frameworks to
be built that are important even for day-to-day development,
such as debuggers and code transformation tools.

In this paper we discuss the three problems, show how
these are solved with a new Compiler model. We present
an implementation, Opal, and show how Opal is used as the
bases for many important tools for the everyday develop-
ment of Pharo 3.

1. Introduction
A lot of research has been done with Pharo and Squeak
in the past. Examples are Bytecode Manipulation with
Bytesurgeon [DDT06], Advanced Reflection [DDLM07,
RDT08, DSD08], Typesystems [HDN09], Transactional
Memory [RN09] or Omniscient Debuggers [HDD06, LGN08].

All these research experiments implemented by chang-
ing the compiler of Pharo/Squeak, and sometimes combined
with virtual machine(VM)-level changes. In contrast to VM-

[Copyright notice will appear here once ’preprint’ option is removed.]

level changes, compiler based experiments have many ad-
vantages: the compiler is implemented in Smalltalk, there-
fore the standard tools and debugging infrastructure can be
used. In addition, the models realized in Smalltalk tend to
hide technical and low level details compared to an imple-
mentation at VM-level.

One of the reasons why the Pharo Project was started
originally is the idea to create a feedback loop for the devel-
opment of the system itself: we revisit successful research
results and integrate them back into the system. This way,
future researchers can build on top of the results of prior
work instead of always starting from scratch.

Opal is the compiler infrastructure used for past research
experiments. The code-base has been used in experiments
over the years.

The compiler framework described in this paper is the
result of revisiting the experimental code with the result of a
compiler that is stable and clean to be integrated in Pharo 3
with the goal of removing the old compiler in Pharo 4.

1.1 The Smalltalk Compiler
In a traditional Smalltalk system, Smalltalk code (text) is
compiled to bytecode. This compilation happens on a per
method basis when the programmer saves an edited method.

The Smalltalk bytecode is a traditional stack-based byte-
code, the bytecode set of Pharo is taken from Squeak and
therefore an extension of the original Smalltalk 80 bytecode
with extensions to support block closures as implemented by
the Cog VM [Mir11].

The Smalltalk bytecode set provides some ways for the
compiler to optimize code statically: Loops and conditionals
are compiled to jump instructions and conditions.

As the traditional Smalltalk system provides a decompiler
from bytecode to text, no other optimizations are done. The
goal is to be able to re-create the original source from byte-
code, which would be impossible in the presence of any se-
rious optimizations.

As such, Opal right now too compiles to exactly the same
bytecode as the old compiler.

It should be noted that in a modern Smalltalk VM, there
is a second compiler, a so-called JIT compiler, in the VM
that compiles the bytecode to native code. This paper is not
concerned at all with this VM-level compiler.

1 2013/9/2

Smalltalk source code

Abstract syntax tree

Bytecode

Scanner + Parser

Destructive analysis

Encoder

Figure 1. A representation of the old compiler toolchain

1.2 Smalltalk Language Tools
Besides the compiler, many IDE-level tools in Smalltalk
reason about code. In the following we give a short overview.

Refactoring Engine. The prime example is the Refactor-
ing Engine [RBJ97] which is the basis of all transformations
related to refactoring. As the original AST of the Smalltalk
compiler was not designed for transformations, the RB im-
plements its own parser and AST.

Syntax Highlighting. As any modern IDE, Pharo supports
syntax highlighting in real time while the developer types.
Syntax highlighting is implemented using its own parser and
representation of code, not reusing any parts of the compiler
or the refactoring engine.

Debugger. The debugger is a central tool for the Smalltalk
developer. Often development happens right in the debugger.
To support highlighting of the execution when stepping, the
debugger needs to have a mapping from bytecode to source
code. This mapping can only be provided by the compiler,
making the debugger reliant on the compiler in a non-trivial
way.

In this paper we analyse the problems that the old com-
piler framework poses. We identify in Section 2 the follow-
ing problems:

1. The architecture is not reusable,

2. The compilation can not be parametrized,

3. The mapping between source code and bytecode is overly
complex.

We present a model for a new compiler (Section 3) to
solve these problems. After we discuss implementation de-
tails (Section 4), we validate the new infrastructure by show-
ing benchmarks and the tools that are build on top of Opal
(Section 5). After a short discussion of related work (Section
6) we conclude with an overview of possible future work in
Section 7.

2. Problems of the Current Compiler
Pharo uses nowadays a direct child of the original Smalltalk-
80 compiler. Despite being an impressive piece of work for
the eighties, the architecture shows its age. As a result, the
compiler framework (scanner, parser, AST) are not used
by other parts of the system. For example, the refactoring
engine uses its own AST.

Reusable architecture. There are modularity problems in
all the levels of the compilation toolchain. At the AST-level,
Pharo uses different AST implementations. To be consistent
(and for maintainability purposes), there should be only one
AST for the whole system, not one AST per feature.

Then, on the semantic analysis-level, another problem
is raised. The AST is dependent on the compiler to the
point that the semantic analysis has side-effects and modifies
the AST. After code-generation, the AST is therefore only
usable by the compiler. Again, the semantic analysis should
be reused in the system and implemented only once.

Lastly, at bytecode-level, no intermediate representation
exists in the compiler. Therefore, the existing compiler back-
end can not be used elsewhere.

Source code mapping. Another issue is the complexity of
the debugging features. According to the current bytecode
set of Squeak and Pharo, the bytecode representation is not
aware of the names of the temporary variables, but only
about their indexes. The bytecode representation does also
not know about the highlighting range. To be able to get
the temporary variable names and the highlighting range, we
need to implement a mapping between the bytecode and the
AST. This mapping is complex, especially for blocks and
even more so for inlined blocks.

Parametrized compilation. Pharo developers would like
to compile certain parts of the system differently, reaching
from a bunch of methods up to a larger set of classes. For
example, with the old compiler a set of classes can not be
recompiled without automatic inlining of conditional mes-
sages. Another parametrization that would be interesting is
to be able to plug in different classes for the compilation
passes like parsing, semantic analysis or code generation.

Problem Summary. How can we have a flexible compiler
with reusable and high-level intermediate representations?

The Opal compiler offers a solution to these problems.
The flexibility comes from its pluggable architecture: you
can easily change the object managing a part of the compila-
tion chain. Opal relies on reusable representations as the RB
AST or the bytecode-level intermediate representation (IR).

3. Opal: A Layered Compiler Chain
In this section we present the design of Opal from a high-
level point of view.

2 2013/9/2

Smalltalk source code

Refactoring browser abstract
syntax tree

Intermediate representation

Bytecode

RBParser

ASTTranslator + IRBuilder

IRByteCodeGenerator

OCSemanticAnnotator

Figure 2. The Opal compilation toolchain’s four stages

3.1 The Opal Model
Explicit compilation passes. As shown in Figure 2, the
smalltalk code is parsed with RBParser to the RB AST. Then
the OCSemanticAnalyser annotates it. The ASTTranslator
visits it, building the IR with IRBuilder. Lastly, the IRByte-
CodeGenerator generates bytecode out of the IR.

3.2 Annotated RB AST: a Reusable Code
Representation

Instead of creating a whole new representation, Opal reuses
the AST from the refactoring browser. In addition, the se-
mantic analysis does not change the AST, but only annotates
it. This guarantees the reusability of the representation.

On the figure Figure 3, we can see the class diagram of
the RB AST. All nodes inherit from the same superclass
RBProgramNode. This way, they all have two main states:
properties, which is a dictionary for annotations and parent,
which is a back pointer to the outer node.

RBProgramNode

properties
parent

RBMethodNode RBPragmaNode

RBReturnNodeRBSequenceNode

RBArrayNode

RBVariableNode

RBCascadeNode

RBMessageNode

RBValueNode

RBBlockNode

RBAssignementNode

RBLiteralNode

Figure 3. The refactoring browser AST class diagram

3.3 Compilation Context

Smalltalk source code

Refactoring browser
abstract syntax tree

Intermediate representation

Bytecode

Compilation context

Figure 4. The compilation context in Opal compilation
toolchain

When compiling a method to bytecode, we need to pass
some objects along the compilation chain. For example, the
old compiler used to pass:

• the requestor: this object corresponds to the UI element
that holds the text to compile. This is needed because it
permits for example to write error messages directly in
the morph text instead of raising an error. For example, if
we compile [:y | [:y | y]], we will get [:y | [Name already
defined ->:y | y]] instead of an error.

• the failBlock: is executed when the compilation fails
in interactive mode. Usually this happens because the
source code was incorrect and an error was raised.

All this information is needed. But the issue with this
approach is that it requires to always pass along these ob-
ject through the whole compilation toolchain. The resulting
methods with excessive numbers of arguments are hard to
maintain and not nice to use. For example, we have in the
old compiler:

Parser>>#parse:class:noPattern:context:notifying:ifFail:
Compiler>>#compileNoPattern:in:context:notifying:ifFail:

To increase the modularity of Opal, we needed to add
even more arguments, most of them being booleans. We de-
cided to add the CompilationContext object. This object holds
all these arguments and in general all information that is of
interest in later phases of the compiler. As Figure 4 shows,
the context is passed through to the whole compilation chain.

3 2013/9/2

3.4 IR: An Explicit Intermediate Representation
We discuss the intermediate representation (IR) of the Opal
Compiler. The following shows the class hierarchy of the IR:

IRInstruction
IRAccess

IRInstVarAccess
IRLiteralVariableAccess
IRReceiverAccess
IRTempAccess

IRRemoteTempAccess
IRThisContextAccess

IRJump
IRJumpIf
IRPushClosureCopy

IRPop
IRPushArray
IRPushDup
IRPushLiteral
IRReturn

IRBlockReturnTop
IRSend
IRTempVector

IRMethod
IRSequence

This intermediate representation is modeling the byte-
code yet abstracts away from details. It forms a Control Flow
Graph (CFG). IRInstructions are forming basic blocks using
IRSequence, these sequences are concatenated by the last
instruction which is an IRJump.

Opal has an explicit low-level representation for three
main reasons. Firstly, it gives to the user the possibility to
easily transform the bytecode. Secondly, it simplifies a lot
the debugging capabilities implementation of the system, as
explained in Section 4.2. Lastly, this representation provides
an abstraction over the bytecode, letting the whole compi-
lation chain of Opal independent of details of the bytecode
representation. A dedicated backend visits the IR (IRByte-
codeGenerator, as shown in Figure 2).

3.5 Debugging Features
The AST with semantic analysis and its IR, provide the basis
to map between all the representations. For example, map-
ping between bytecode offset and text. Details are explained
in Section 4.2.2.

4. Opal Implementation Details
In this Section, we will present some of the implementation
details of Opal. We will discuss two aspects: first the compi-
lation context and how it enables Opal to be parametrizable
and pluggable. Second we discuss in detail the infrastructure
implemented for mapping text with AST, IR and low-level
offsets in compiled code.

4.1 Compilation Context
The compilation context is an object that holds state that is
of interest to later passes done by the compiler. The class
definition is shown here:

Object subclass: #CompilationContext
instanceVariableNames: ’requestor failBlock noPattern class

category logged interactive options
environment parserClass semanticAnalyzerClass

astTranslatorClass bytecodeGeneratorClass’
classVariableNames: ’’
poolDictionaries: ’’
category: ’OpalCompiler-Core-FrontEnd’

The instance variables all help to make Opal more cus-
tomizable and to change the compilation chain. We present
them one by one.

Basic data.

requestor : this object corresponds to the user interface
element that holds the text to compile.

failBlock : this block is executed when the compilation fails.

noPattern : this boolean tells if the text to compile starts
with the method body or by the method selector.

class : the class of the compiled object to know how to
compile accesses to instance variables.

category : the category where the compiled method should
be located.

logged : will the new compiledMethod creation be logged in
the changes file.

interactive : this compilation happens in interactive mode
(Warnings are raised and stops the compilation) or in
non interactive mode (Warnings are shown on console
logging and does not stop the compilation).

environment : points to the Smalltalk environment (usually
an instance of Smalltalk image) where you compile. This
is used for example for remote compilation.

It should be noted that the current API follows to some
extend the old implementation to make it easier to move the
whole system to use Opal. In a second step, we plan to revisit
the compiler API to simplify it.

Compiler options. The Opal compiler proposes options. A
programmer can specify them either on a per class basis by
overriding the compiler method or on method basis with a
pragma. These options are passed with the compilation con-
text through all stages of the compiler and can be read and
reacted upon on any level. The first set of options concern
optimizations of control-structures and loops:

• optionInlineIf
optionInlineIfNil
optionInlineAndOr
optionInlineWhile

4 2013/9/2

optionInlineToDo
optionInlineCase

This set of options controls automatic inlining of some
message, such as ifTrue: and and:. There is no option to not
optimize class as in Pharo the class is always a message
send.

• optionLongIvarAccessBytecodes

This option forces the compiler to generate long byte-
codes for accessing instance variables. It is used for all
classes related to MethodContext to support c-stack to
Smalltalk stack mapping.

Compiler Plugins. In some cases it can be useful to re-
place parts of the compilation chain. Therefore the program-
mer can change which class is used for each compilation
phase. One can redefine:

parserClass: changes the class that parses Smalltalk code
and returns an RB AST. For instance a scannerless Parser
could be used instead.

semanticAnalyzerClass: changes the class that is perform-
ing the semantic analysis on the RB AST nodes.

astTranslatorClass: changes who translates the RB AST to
Opal IR intermediate representation.

bytecodeGeneratorClass: changes the generator class used
to create bytecode from the Intermediate representation.
This is especially useful when experimenting with new
bytecode sets.

4.2 Opal Debugging Features
A central feature of any Smalltalk is its advanced debugger.
To be able to implement a stepping debugger, there needs to
be a mapping between the program counter on the bytecode-
level and the text that the programmer wrote. In addition, we
need to be able to access temporary variables by name.

4.2.1 Debugger Highlighting
The AST nodes know their source intervals as they are
recorded when parsing. Then, each IR instruction knows
the AST node that generated them. Lastly, from each byte-
code you can get the IR quite easily, as each IR node knows
the index of the corresponding generated bytecode.

Therefore the mapping can be done easily at AST/IR-
level. Figure 5 shows a complete example of mapping an
offset in the bytecode to the source. The idea is to generate
the AST and IR from the compiled method, then to map from
bytecode to IR to AST and lastly to the source interval. So
the mapping does not build up special data structures, but
instead relies on annotations on the AST and the IR that are
generated by the compiler. It should be noted that we need
to do a full compilation of the method from the sources to
get the correct AST and IR mapping.

source codeBytecode

foo
 ^ 1 + 2 + 3

76 77 B0
20 B0 7C

IRMethod RBMethodNode

RBSequenceNode

RBReturnNode

RBMessageNode 1

RBLiteral
ValueNode 1

IRPushLiteral

IRSequence

RBLiteral
ValueNode 1

IRPushLiteral
RBLiteral

ValueNode 2

IRReturn
RBReturnNode

IRSend
RBMessageNode 1

IRPushLiteral
RBLiteral

ValueNode 3
RBMessageNode 2 RBLiteral

ValueNode 3

IRSend
RBMessageNode 2

B0
+ 2

1 2

3
+ 2

+ 3

^ 1 + 2 + 3

^ 1 + 2 + 3

foo
 ^ 1 + 2 + 3

RBLiteral
ValueNode 2

Figure 5. Bytecode to source code highlighting

4.2.2 Temporary Name Mapping
Temporary variables are accessed through an offset. For a
simple temporary variable, the runtime representation of the
method (called context) uses this offset to access the value
of the variable. Moreover, Pharo supports blocks (commonly
called closures). As these closures can live longer than their
enclosing context, they also need their own runtime repre-
sentation (context). Variables shared between closures and
their enclosing contexts are stored in a heap allocated array
named tempVector. Here is an example of a method with a
block and shared variables:

SomeRandomClass>>foo
| temp1 temp2 |
temp1 := #bar.
[| closureTemp |
closureTemp := #baz.
temp2 := closureTemp] value.
ˆ temp2

We see in Figure 6 that the offset of the temporary vari-
able temp1 is 2 in the method context. temp2, being shared
by both the block and the method context, is stored in a temp
vector. So its offset, while being accessed from the block or
the method context, is 1 to reach the temp vector, then 1
which correspond to the offset in the temp vector.

To speed up the execution, one optimization is imple-
mented. The temporary variables that are read-only in the
closure are not stored on the external array but passed to the
block context similarly to an argument.

Temporary name mapping is the correspondence between
these offsets and the variable name. This mapping can be
complex: in Smalltalk, one can have several nested blocks in
a method and in each block there might be some read-only

5 2013/9/2

Method context

Closure context

Heap allocated array
1 tempVector
2 temp1

1 temp2

1 tempVector
2 closureTemp

Figure 6. Runtime temporary variable storage

or written temporaries. This mapping is used for debugging
(debugger and inspectors).

As an example for inspecting a context, the following
code presents a simple temp access:

SomeRandomClass>>example
| temp |
temp := #bar.
ˆ temp

The offset of the temporary variable temp is 1. Therefore,
when we inspect a context, the result is just an inspector on
an object that has offsets, as we see in Figure 7.

Figure 7. A basic inspector on a context

Programmers do not want to debug contexts with indexes
of temporaries, but with temporary names (Figure 8).

Figure 8. A specific inspector on a context

Temporary Names with Opal. Similarly to the highlight-
ing implementation, we want to reify all needed informa-
tion at the AST-level. We leverage the information added
to the AST in the semantic analysis phase of the compiler.
This includes objects modeling temporary names and offsets
as well as so called scopes for each method or block AST
node. These scopes store defined variables and are used for
mapping names to the objects describing the variables. Each
node can therefore access the corresponding scope due to the
parent relationship in the AST.

In figure 8, we can click on the [temp] entry. This displays
on the right panel the value. To do this, the context needs to
know to which offset correspond the temporary name temp.
The context knows in this case for the temporary variable
offset the associated value. It knows that offset 1 is associ-
ated to the value #bar. The context, being a representation
of the method, can access its corresponding method AST
node. The node then provides through scopes the offset in-
formation about the variable. Of course, this simple example
becomes exponentially complex when we have multiple clo-
sures inside the methods with shared variables that need to
be stored in temp vectors.

The temporary name mapping, now working on AST-
level, works the same way for optimized blocks (to:do:,
ifTrue:ifFalse:, ifNil:ifNotNil:, and:, or:) and non optimized
blocks.

5. Validation
We have discussed three problems of the old compiler in-
frastructure in Section 2. We will show in the following how
the new design of Opal solves the problems.

To show that the resulting implementation is usable in
practice, we show benchmarks of compilations speed.

5.1 Problem 1: Reusable Architecture
Pharo 3 is moving many subsystems to use parts of the Opal
Infrastructure. We highlight some of them.

AST interpreter. We implemented a complete AST inter-
preter on top of the annotated AST. The AST interpreter is
written in Pharo, permitting to prove the reusability of the
annotated AST. The interpreter is able to interpret all the
tests of the Pharo Kernel, and they all pass.

Hazelnut. In the case of Hazelnut [CDF+11], a bootstrap
of a new Pharo image from sources, Guillermo Polito uses
Opal for the flexible features of the semantic analysis tool.
As he needs to compile some smalltalk code not for the cur-
rent Pharo environment, but for a remote image, he needs to
change the way variables are resolved. He implemented his
own semantic analyzer, with different bindings for variables,
replacing the one from Opal. Lastly, he used Opal to com-
pile the methods, with a different semantic analyzer that the
default Opal one.

6 2013/9/2

Metalinks. Reflectivity is a tool to annotate AST nodes
with Metalinks. A Metalink annotates an AST node. Met-
alinks can be executed before a node, instead of a node, af-
ter a node, if the execution of a node yields an error or if
the execution of a node yields no error. Once the AST of a
method is annotated with some metalinks, a method wrap-
per replaces the method to handle the compilation of an ex-
panded version of the AST that takes metalink into account
and then installs the resulting method. This tool rewrites the
AST nodes according to their metalinks. The new AST is
recompiled thanks to Opal.

Class builder. The new Pharo class builder [VBLN11,
VSW11] avoids class hierarchy recompilation when adding
instance variables in the superclass chain. On the low-level,
this means that when adding an instance variable, some ex-
isting instance variables have to shift the instance variable
offsets. This is done, in the case of a compilation with Opal,
with IR transformations.

Smart suggestions. While we are coding we usually want
to apply actions on the current edited element. For example
if we have selected a variable we may want to rename it. To
do this, IDEs often have large menus, including the correct
feature, usually with lot of options that do not apply to the
selected element.

Smart suggestions show only the options that you can ap-
ply to the selected AST node. We use the current AST to
do this through RBParser»#parseFaultyMethod: and the Opal
compiler semantic analysis. The best AST node correspond-
ing to the selected text is calculated. Then the available sug-
gestions are provided. The Opal semantic analysis provides
the nature of a variable: temporary, instance or class to refine
the suggestions.

Node navigation. Sometimes while browsing code we
think in programming terms instead of text. For example
we think in a message send or a statement instead of word,
spaces or symbols. The idea is to use context information
and let the programmer navigate the code thinking in those
terms. In order to do this we find the best AST node and
offer navigations in different directions:

Parent: The node that contains the selected one. For exam-
ple if we have the code ’aNumber between: anotherNum-
ber’ and we are selecting the variable anotherNumber if
we navigate to the parent the IDE highlights the message.

Sibling: The node in the same level that the selected. For
example in a temporary variables definition: ’| one two
three |’ if we are in the variable one we can navigate to
the variable definitions two or three.

Child: Node contained by the selected. For example if we
in a message send: ’aNumber between: anotherNumber’ we
will go the parameter anotherNumber.

Syntax highlighting as you type. We want to color the
code we are writing using all the available information, in

order to be able to select the scope where we are or to show
associated information for a specific piece of code. To do
that we use the AST and the semantic analysis (we need
the semantic analysis because we want to show different
kinds of variables with different colors, like undeclared vari-
ables), through the RBParser»#parseFaultyMethod: and RB-
Parser»#parseFaultyExpression: to obtain the AST represen-
tation. The implementation is simple because we can define
a new visitor defining the coloring algorithm. Once we de-
fine the coloring from each syntax representation we just
visit the tree.

5.2 Problem 2: Source Mapping
To validate the new implementation of source code map-
ping, we use it as the basis for the debugger. Instead of
implementing a dedicated map for the debugger (Debugger-
MethodMap), we forward all requests to the AST (which is
cached by the system). To test the performance, we perform
a simple benchmark. We print the error message that prints
the whole stack. This prints for each stack frame all the vari-
ables:

String streamContents: [:str | thisContext errorReportOn: str]

We execute this code in Pharo 1.4 which had a limited
caching for the debugger map, as well as in Pharo 3 for both
the old and the new compiler:

Pharo 1.4 (old compiler, simple cache) 11.7 per second
Pharo 2 (old compiler, no caching) 6.13 per second
Pharo 3 (new compiler, AST cache) 51.7 per second

As we can see, the Opal strategy of using the annotated
AST structure is faster than even the old compiler using the
simple debugger map cache.

5.3 Problem 3: Parametrized Compilation
No automatic inlining. To prove the flexibility of the Opal
compiler, a good example is not to inline some messages in
some classes or methods of the system. As an example, we
can advice the compiler to not inline the if statement with a
pragma. With the old compiler, the if condition, sent on a non
boolean object, as a symbol, raises a NonBooleanReceiver
error. On the opposite, with Opal compiler, the if condition,
also sent on a symbol, raises a MessageNotUnderstood error.

MyClass>>foo
<compilerOptions: - optionInlineIf>
^ #myNonBooleanObject ifTrue: [1] ifFalse: [0]

MyClass new foo
"With the old compiler, raises a runtime error NonBooleanReceiver"
"With Opal compiler, raises a MessageNotUnderstood error"

This aspect is useful for different reasons. For example,
researchers might want to experiment with new boolean im-
plementations. They could want a boolean system with true,

7 2013/9/2

false and maybe. In this case, they needed to implement
the new boolean messages with different names, creating a
non readable smalltalk code, because they were not able to
use the selector ifTrue:, ifFalse: or other optimized constructs.
Other examples are proxies for booleans, symbolically exe-
cuting code for type information and others.

The downside is that the non-optimized code is just pro-
duced for the methods or classes explicitly compiled with
this option. To scale this to all code of the system, we re-
compile non-optimized code when a mustBeBoolean: excep-
tion is raised. The nice property of this solution is that it only
slows down the case where an optimized construct is called
on a non-Boolean object.

5.4 Compilation Benchmarks
Even though the Opal model is introducing an Intermedia
Representation (IR) and using multiple visitor passes, the
resulting compiler is comparable in speed.

The benchmarks were run on a MacBook pro, on Mac OS
X (Version 10.8). The machine had 8 Gb of RAM (1600MHz
DDR3) and a Intel Core i5 processor of 2.5 Ghz. The SMark
framework provides a precise average time of each bench-
mark run including error margin.

Compilation Speed. We first compare the two compilers
with regard to compilation speed when recompiling classes.
This exercises the whole compiler toolchain from parser
down to bytecode generation and therefore gives a real world
view on compilation speed. In the following table we com-
pare recompiling the whole image and recompiling Object
class:

Recompile Opal Compiler Old Compiler
Object class (ms) 296.66 ± 0.98 222.9 ± 2.4
Whole image (ms) 72120 ± 189 49908 ± 240

As we can see, the factor between the compilers is around
1.4. Considering that Opal generates a reusable AST with
annotations for semantic analysis and uses a dedicated IR
representation for the bytecode generation, this performance
is acceptable. Especially considering that we can use the
low-level IR backend in cases where speed matters, as the
next benchmark shows.

IR Benchmarks. The intermediate representation of Opal
allows the programmer to manipulate the high-level IR in-
stead of the low-level bytecode, AST or text. Manipulating
bytecode directly is not practical due to hard coded jump off-
sets and the need to create new method objects if things like
number of literals or the max depth of the stack changes.
Using the high-level text or AST model for manipulating
code can lead to performance problems, even when using the
faster old compiler. An example for this is recompilations of
class hierarchies when adding instance variables high up in
the class hierarchy.

Opal provides the possibility to manipulate the IR repre-
sentation instead. To assess the performance, we benchmark
the speed of the IR backend. We show the times for

• decompiling bytecode to IR,
• a full IR based roundtrip of decompiling and regenerating

bytecode,
• generating bytecode from IR (difference of the first two).

All these are done on all methods of the complete system.

BC -> IR (ms) BC -> IR -> BC (ms) IR -> BC (ms)
2827.2 ± 4.0 10533 ± 13 7706 ± 17

The benchmarks prove that manipulating IR is much
faster than recompiling source code, both with the old or
the new compiler. We can regenerate the whole bytecode of
the Pharo 3 image in just 10 seconds instead of 50 seconds
when recompiling with the old compiler.

This fast way to manipulate methods will be used by the
new class builder when adding instance variables.

Runtime Speed. It should be noted that as the compiler
generates the same bytecode, execution speed of the gen-
erated code is identical. We do therefore not provide any
benchmarks.

6. Related Work
Smalltalk like languages implement a compiler from text
to bytecode in Smalltalk and make it available reflectively.
This is not the case with many other languages. In most lan-
guages, the compiler is a stand-alone application not visible
for compiled programs. As such, all the compiler, IDE and
tools are seen as distinct and sharing implementations be-
tween them is not common. In turn, compiler frameworks
that enable experiments are done as external tools without
the goal of replacing the main compiler of the language.

Polyglot [NCM03] is an extensible compiler framework
that supports the easy creation of compilers for languages
similar to Java. A newer example is JastAdd [EH07], a
compiler framework for Java that is build using a special
Java-like AOP language. It has seen a lot of use in recent
implementations of AOP systems in Java.

All Smaltalk-like languages contain a compiler very sim-
ilar to the old Compiler of Pharo. It is available in the lan-
guage, but changing it is difficult. The easiest way to reuse
the compiler is to copy the code and change it. And exam-
ple of this is the Tweak extension of Smalltak used in Cro-
quet [SKRR03].

7. Future Work and Conclusion
In this paper we have presented Opal, a new Compiler infras-
tructure for Pharo. Opal solves some problems that where
found when using Pharo for numerous research prototypes:
(i) The architecture is not reusable, (ii) compilation can not

8 2013/9/2

be parametrized and (iii) the mapping between source code
and bytecode is overly complex. As shown, Opal solves
these problem by being bases on a modular design using a
compilation context and keeping the mapping explicit.

We have validated Opal by presenting benchmarks and
shown a number of tools and frameworks that are build using
it. Opal is already used as the default compiler of Pharo 3.

There are many possible direction for future work, for
example:

Compilation time optimizations. As seen in Section 5.4,
Opal compiler is now 1.4 times slower than the old one.
With this, Opal is already fast enough for productive use.
However, we plan to conduct extensive profiling and op-
timization passes after the compiler has been integrated
in Pharo 3.

Optimizations on IR. Currently, optimizations are done by
the ASTTranslator. For example, the inlining of block for
ifTrue: or whileTrue: is done by analyzing the AST. How-
ever, the AST makes it hard to analyze since there is no
explicit representation of control flow. Therefore, the cor-
rect place for these optimizations would be on the IR-
level as the IR is a CFG (Control Flow Graph). We plan
to simplify the AST to IR translation and to move the
optimizations to the IR-level.

Experiment with Opal. The flexible features of Opal per-
mits to conduct experiment more easily. We would like to
experiment statically available information for optimiza-
tions. For example, it is easy to inline message sends
to globals. In addition, simple limited type inference
schemes are interested to explore.

Acknowledgements
We thank Gisela Decuzzi for her work and comments about
AST based tools, Jorge Ressia for his work on porting Opal
to the new closure model and Anthony Hanan for creating
the ClosureCompiler project years ago that was the start-
ing point for the explorations that became Opal. We thank
Stéphane Ducasse and Camillo Bruni for their reviews.

This work was supported by Ministry of Higher Edu-
cation and Research, Nord-Pas de Calais Regional Coun-
cil, FEDER through the ’Contrat de Projets Etat Region
(CPER) 2007-2013’, the Cutter ANR project, ANR-10-
BLAN-0219 and the MEALS Marie Curie Actions program
FP7-PEOPLE-2011- IRSES MEALS.

References
[CDF+11] Gwenael Casaccio, Stéphane Ducasse, Luc Fab-

resse, Jean-Baptiste Arnaud, and Benjamin van Ry-
seghem. Bootstrapping a smalltalk. In Proceedings
of Smalltalks 2011 International Workshop, Bernal,
Buenos Aires, Argentina, 2011.

[DDLM07] Marcus Denker, Stéphane Ducasse, Adrian Lienhard,
and Philippe Marschall. Sub-method reflection. In

Journal of Object Technology, Special Issue. Proceed-
ings of TOOLS Europe 2007, volume 6/9, pages 231–
251. ETH, October 2007.

[DDT06] Marcus Denker, Stéphane Ducasse, and Éric Tanter.
Runtime bytecode transformation for Smalltalk. Jour-
nal of Computer Languages, Systems and Structures,
32(2-3):125–139, July 2006.

[DSD08] Marcus Denker, Mathieu Suen, and Stéphane Ducasse.
The meta in meta-object architectures. In Proceedings
of TOOLS EUROPE 2008, volume 11 of LNBIP, pages
218–237. Springer-Verlag, 2008.

[EH07] Torbjörn Ekman and Görel Hedin. The JastAdd system
– modular extensible compiler construction. Science of
Computer Programming, 69(1-3):14–26, 2007.

[HDD06] Christoph Hofer, Marcus Denker, and Stéphane
Ducasse. Design and implementation of a backward-
in-time debugger. In Proceedings of NODE’06, vol-
ume P-88 of Lecture Notes in Informatics, pages 17–
32. Gesellschaft für Informatik (GI), September 2006.

[HDN09] Niklaus Haldimann, Marcus Denker, and Oscar Nier-
strasz. Practical, pluggable types for a dynamic lan-
guage. Journal of Computer Languages, Systems and
Structures, 35(1):48–64, April 2009.

[LGN08] Adrian Lienhard, Tudor Gîrba, and Oscar Nier-
strasz. Practical object-oriented back-in-time debug-
ging. In Proceedings of the 22nd European Conference
on Object-Oriented Programming (ECOOP’08), vol-
ume 5142 of LNCS, pages 592–615. Springer, 2008.
ECOOP distinguished paper award.

[Mir11] Eliot Miranda. The cog smalltalk virtual machine. In
Proceedings of VMIL 2011, 2011.

[NCM03] Nathaniel Nystrom, Michael R. Clarkson, and An-
drew C. Myers. Polyglot: An extensible compiler
framework for Java. In Compiler Construction, vol-
ume 2622 of Lecture Notes in Computer Science,
pages 138–152. Springer-Verlag, 2003.

[RBJ97] Don Roberts, John Brant, and Ralph E. Johnson. A
refactoring tool for Smalltalk. Theory and Practice of
Object Systems (TAPOS), 3(4):253–263, 1997.

[RDT08] David Röthlisberger, Marcus Denker, and Éric Tanter.
Unanticipated partial behavioral reflection: Adapting
applications at runtime. Journal of Computer Lan-
guages, Systems and Structures, 34(2-3):46–65, July
2008.

[RN09] Lukas Renggli and Oscar Nierstrasz. Transactional
memory in a dynamic language. Journal of Com-
puter Languages, Systems and Structures, 35(1):21–
30, April 2009.

[SKRR03] David A. Smith, Alan Kay, Andreas Raab, and
David P. Reed. Croquet, a collaboration system archi-
tecture. In Proceedings of the First Conference on Cre-
ating, Connecting and Collaborating through Comput-
ing, pages 2–9, 2003.

[VBLN11] Toon Verwaest, Camillo Bruni, Mircea Lungu, and
Oscar Nierstrasz. Flexible object layouts: enabling
lightweight language extensions by intercepting slot

9 2013/9/2

access. In Proceedings of 26th International Confer-
ence on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA ’11), pages 959–
972, New York, NY, USA, 2011. ACM.

[VSW11] Toon Verwaest, Niko Schwarz, and Erwann Wernli.
Runtime class updates using modification models. In
Proceedings of the TOOLS 2011 8th Workshop on Re-
flection, AOP and Meta-Data for Software Evolution
(RAM-SE’11), 2011.

10 2013/9/2

Early exploring design alternatives of smart sensor software
with Model of Computation implemented with actors

Jean-Philippe Schneider Zoé Drey Jean-Christophe Le Lann
UMR 6285 Lab-STICC, ENSTA Bretagne
jean-philippe.schneider@ensta-bretagne.fr

Abstract
A cabled sea floor observatory is an infrastructure composed of a
network of sensors that aims to study the oceans.Such networks
present two drawbacks: the large amount of acquired data prevents
manual processing, and a lot of irrelevant data degrades the treat-
ment efficiency. To smartly reject irrelevant data, filtering must hap-
pen at the source. This requires the design of complex sensors that
support concurrent operations to mix acquisition, treatment and dis-
semination of data. Such sensors are called smart sensors.

Simulation using adequate models of concurrency can help in
the design activity of smart sensors. In this paper, we present a
framework based on Models of Computation (MoCs) to model con-
currency in a smart sensor software that are implemented using
actors. This framework enables to rapidly test alternatives of ar-
chitecture in the early stages of the design process. Some actors
implement the computation behavior, some others implement the
communication behavior. This distinction promotes agility during
the exploration phase. Several MoCs are investigated among which,
Kahn Process Network (KPN), Communicating Sequential Process
(CSP) and Synchronous Data Flow (SDF).

The framework implementation relies on Scala at first, while
Smalltalk and then the Biniou framework are used to speed up the
process, through alleviating the need for a software simulator and
compiling to hardware platforms instead.

Keywords Actor, Model of Computation, Smalltalk, Scala

1. Introduction
In 2008 the European Council published the directive 2008/56/EC
which obliges European states to check the water quality in their
coastal area on the long term. This raises the interest for coastal sea
floor observatories. An example of such a project is the MeDON
(Marine eData Observatory Network) observatory deployed near
Brest in France[14]. The usual structure of a cabled sea floor ob-
servatory is a network of sensors and one or more servers. Sensors
acquire data and servers perform computations on this data. The
acquisition and the computation processes can be achieved con-
currently. A drawback of a cabled sea floor observatory is that it
generates a huge amount of data to process and to store. Moreover,
the data exhibits a lot of redundancy and noise, impeding the com-

[Copyright notice will appear here once ’preprint’ option is removed.]

putation efficiency of the servers. A way to address this issue is to
delegate some parts of the computation to smart sensors, as sug-
gested by Spencer et al. [30].

A smart sensor consists of a sensing device that acquires some
data and a microprocessor that performs computations on this data.
For example, an hydrophone monitors the underwater sound level.
The hydrophone can compare real-time acquired data to a com-
puted average sound level. If the current level is higher than the
average one, the hydrophone can directly switch a camera on with-
out resorting to a server.

Delegating some of the data computation to smart sensors re-
duces the amount of the data to be processed by the servers. A
smart sensor can perform multiple tasks such as the acquisition,
the processing, and the dissemination of data. For example, a smart
sensor built around an HD camera acquires images, detects shapes
in these images, and broadcasts the shape classification over the
network. When an image is acquired, it can be either computed
by a single process or by multiple processes, depending on its size
or its complexity. In the latter case, the designer has to decide (1)
how to divide the input image and dispatch sub-images among pro-
cesses and (2) how to recombine the results of the computations
on the sub-images. Such operations require concurrency to be care-
fully handled between the processes of the smart sensor. To handle
multiple processes, different concurrent software architectures can
be envisioned; the designer has to choose the one that best fit his
needs, in terms of e.g., speed, memory usage, and image precision.

In this paper, we present an experimental framework to rapidly
test different alternatives of concurrent software architectures. This
framework relies on the actor model as described by Agha [2]. The
actor model offers a simple programming structure to define con-
current applications. Our framework implements a range of exist-
ing models of concurrency and communication that provide vari-
ous ways to exchange data and synchronize processes. These mod-
els, also called Models of Computation are: Kahn Process Network
(KPN) [16], Communicating Sequential Process (CSP) [13] and
Synchronous Data Flow (SDF) [21]. Specifically, the framework
aims to help designers to:

• test the functionalities that they implemented in a smart sensor;
• simulate different alternatives of concurrent software architec-

tures;
• adjust the alternatives until reaching a solution satisfying their

needs.

A first implementation, written in Scala, serves as a baseline,
allowing to meter the gains that using Smalltalk offers. The Scala
language, which integrates the actor model, has the advantages of
running on the Java Virtual Machine, then supports integration of
existing pieces of code written in Java, and to be wide-spread in the
industry.

1 2013/9/6

Smalltalk has already been used in the context of multi-agent
systems[25]. The agent formalism can be used to describe networks
of smart sensors, where smart sensors are viewed as autonomous
entities (the agents) that communicate with each other in order to
perform a mission. Smalltalk also addresses the issue of program-
ming virtual machines that support multiple concurrency mecha-
nisms [23].

Also Smalltalk has been used to [19] set up Biniou, a framework
that describes applications as a set of concurrent processes, prior
to synthesizing the application onto a reconfigurable device. This
process, often referred as high-level synthesis (HLS), can either
rely on global scheduling or on distributed scheduling, with either
a known behavior or inter modules arbitrary synchronizations. The
benefit of using Biniou is to easily stress some design options,
while providing a hardware speedup compared to a pure software
execution. Besides, as Biniou embeds debugging (observability,
controllability) features within the generated hardware, this speed
up comes at no cost in term of exploration and analysis.

Our contributions are as follows :

an actor-based framework for prototyping smart sensors We
have defined a framework based on the actor model to ease
the prototyping of smart sensors. This framework separates
the computation concerns from the communication ones in the
software design of a smart sensor.

two implementations of our framework We have experimented
the underlying model of our framework in two languages: Scala
and Smalltalk.

a case study of our framework We have applied our framework
on a case study useful for seafloor observatories. This case
study is a basic application to detect edges in an image captured
by a camera.

The rest of the paper is organized as follows. Section 2 first
describes some related work and summarizes the definitions used
in the paper for the main concepts. Section 3 provides more de-
tails on the context and our motivations. Section 4 delves into the
choices made for the implementation of our framework. Section 5
demonstrates the usage of our framework on a simplified example
of Smart Sensor.

2. Related Work
The modeling of embedded systems in general and of sensors in
particular has been studied in various ways. This section provides
background and focus on the notion of Model of Computation
(MoC) and Actors, as they both drive our modeling.

2.1 Background
SensorML [4] has been used for describing the specification of
sensors with a XML format. The XML Schema of SensorML is
standardized by the Open Geospatial Consortium. In SensorML a
sensor has a series of attributes and may be composed of processes
linked together. Robin and Botts [26] demonstrated the use of
SensorML to describe chains of processes and to analyze acquired
data. SensorML describes the relationships between processes but
it neither provides a description of the communication nor the
synchronization mechanisms between processes.

Diallo et al. [7] leverage MoCs to describe the communication
semantics within models in the Model-Driven Engineering context.
They define a modeling language called Cometa that enables to
model the communication and synchronization mechanism defined
by a MoC.

ThingML [9] is a Domain-Specific Language for modeling
resource-constrained systems such as smart sensors. A Model
Driven Engineering approach is promoted, using nested state ma-

chines to model the behavior. Several model-to-code transforma-
tions are defined and target the Java programming language, the
Arduino family of board and the Atmel AVR and TI MSP chips.
As the final aim of ThingML is to generate code, the designers of
the system must be highly confident in their model and transforma-
tion engines.

FlowTalk [3] is a high-level programming language derived
from Smalltalk to program sensors. FlowTalk identifies the use of
time-consuming operations such as reading sensor values or access
to the network. Code in NesC (a derivative of C) that optimizes
the use of the computing resources is then generated. FlowTalk fo-
cuses on the sequential programming of the sensors. Our approach
focuses on the concurrent architecture of the software of the sensor.

Several tools or language libraries implement specific MoCs.
Communicating Sequential Process is implemented in the Java Pro-
gramming Language with JCSP or in Scala with Communicating
Scala Objects [32]. A SDF-based approach can be found in indus-
trial tools like Scade Suite [33]. However, these tools are restricted
to one Model of Computation. Since we want to explore architec-
ture that may mix different MoCs we need a tool that implements
various MoCs.

Ptolemy [8] is an analysis tool for heterogeneous systems based
on Models of Computation. Ptolemy is a graphical system mod-
eling tool. Models are executable through a thread-based Java im-
plementation. In Ptolemy, designers can choose only one MoC to
model communication for a given network of processes. In contrast,
our actor-based framework allows designers to use multiple MoCs
to manage different styles of communication between processes.

ForSyDe [27] is both a tool and a Model-Driven Engineering
methodology for the design of system on chips (SoC) based on
Models of Computation. MoCs in ForSyDe are implemented in
Haskell. The proposed methodology is based on the use of mod-
eling during the whole design cycle. The model is refined incre-
mentally until the designer gets a model ready for implementation
on a SoC.

Our approach is synergetic with these works, as we describe
concurrency between processes and we make explicit their commu-
nications and synchronizations. We offer a practical tooling to im-
plement and simulate several alternatives of architecture enabling
to verify various functional scenarios for concurrent applications.
The simulations enable to select the design alternatives that best
suit the needs of the system.

Figure 1. Overview of a design process flow of a system architec-
ture

2 2013/9/6

In Figure 1, we illustrate the design process flow of a system ar-
chitecture. Our environment intends to serve as an exploration step
(central left bubble) with fast, but coarse grained evaluations. Sim-
ulating architecture alternatives helps the designer to fully capture
the functional requirements. Once done, architecture models are
evaluated with other tools such as ForSyDe or Ptolemy to compare
the results of the different analysis.

2.2 Models of Computation
A Model of Computation (MoC) for concurrent applications de-
fines [22]:

1. the composition of the concurrent components in an application
including the specification of computations inside a component;

2. the concurrency mechanisms that govern the execution of the
components;

3. the communication mechanisms between the components.

MoCs are used to design embedded systems [15] such as smart
sensors. They provide an abstraction of the concurrency that en-
ables to design a system without having to take into account the
implementation intricacies of concurrency on the actual system.
This ability is particularly useful in the first phase of the design
cycle when the final platform may not have been chosen yet.

2.3 Actor Model
The actor model is a paradigm that defines the components of a
concurrent system as entities, i.e., the actors, that run in parallel
and communicate asynchronously with each other [2]. An actor is
able to send messages to other actors and to receive messages from
them. Each actor has its own buffer to receive messages. When
an actor sends a message to another it is never blocked. On the
contrary, when reading data from its buffer, an actor is blocked if
the buffer is empty.

In some languages such as Erlang [1] or Scala [11], actors are a
language feature. In other languages such as Java (e.g. Kilim [31])
or Smalltalk (Actalk [5]), actors are provided through libraries.

In a former work, we showed that each concurrent processes of
a smart sensor can be made of a thread with a FIFO to store received
data [29]. Our framework goes a step further in the use of actors to
implement the processes of a smart sensor.

3. Context and Motivations
Unlike standard sensors, smart sensors have a microprocessor that
enables to provide them with intelligence [30]. A smart sensor is
able to acquire data, to perform computations on these data and to
send the result of the computations over a network. A smart sensor
is also able to modify its behavior according to data sent by other
smart sensors. In the context of sea floor observatories, smart sen-
sors are studied because their embedded intelligence enable them
to automatically register into the sensor network of the observa-
tory [34]. They are also able to reduce the amount of data that is
sent on the network.

Because a smart sensor mixes hardware and software, faults and
errors in such a system come either from software or hardware, or
interactions between software and hardware. In sea floor observa-
tories, recovering from a failure may require an on-site interven-
tion using expensive equipments. As the underwater environment
is very hostile, hardware failures due to unexpected causes have a
high rate of appearance. As the software of a smart sensor is the
easiest manageable part, a lot of pressure is put on the software
engineers. They have to reduce the risks of pure software failures.

In order to ensure the quality of their softwares, software en-
gineers use rigourous development methodologies supported by

tools. For example, the International Council of System Engineer-
ing (INCOSE) [24] details such a system engineering methodology
in its Systems Engineering Handbook [12]. In this methodology,
the step of the system architecture design consists in defining dif-
ferent candidates of architecture and then in validating them. The
validated architectures are compared to choose the one that best fits
the system requirements. In order to validate the candidate architec-
tures, simulation can be used. We are interested in the concurrent
behavior of the system, the communication and synchronization.
Simulation requires a way to ease the modeling of these aspects.

In small-size systems, it is tempting to develop the software of
the smart sensor directly on the final platform. The software may
mix portions of code at different levels of maturity. This can be
the source of failures in the final system. In a complex system, it
is essential to separate prototyping from final coding in order to
obtain the required level of quality.

It is also required to abstract from the smart sensor platform.
MoCs enable reasoning about the system at a high level, abstracting
over the low-level (platform specific) details. This abstraction has
the following advantages as shown in Figure 2:

• it enables to generate software for different platforms from the
same model;

• it enables to perform simulation of the system on a platform ag-
nostic simulation framework to validate functional properties;

• it ensures the coherence of the different generated software as
communication and synchronization are well-defined.

Figure 2. Benefits of using Models of Computations

To design a smart sensor, architects must identify the functional-
ities of the system, as well as the way data are exchanged in the sys-
tem. A prototyping framework should help the designers in these
tasks. Prototyping is a way for designers to discuss with the client
with a concrete support. Functions of the system can be incremen-
tally prototyped with the client.

The exchange of data among the functions of the system has a
great influence on the architecture of the system. For this reason,
designers need to stress the different communication mechanisms
to evaluate their influence on the functions of the smart sensor.

4. Implementation Choices
Actors provide a convenient way to program a concurrent applica-
tion. We have experimented an implementation of MoCs with ac-
tors. This section highlights the choices we have made during the
implementation.

4.1 Framework Architecture
Choosing the appropriate communication mechanisms in a concur-
rent application is challenging. For example, it requires to manage
deadlocks or concurrent access to shared variables.

Instead of implementing a scheduler to simulate concurrency,
we rely on actors provided by the implementation language of
our framework. In doing so, we focus on the implementation of
different communication mechanisms defined by MoC.

3 2013/9/6

A disadvantage of actors is that they only have a single FIFO to
receive the messages from other actors. Karmani and Agha [18]
points out that this mechanism does not guarantee the order of
reception of messages by an actor. They suggest the creation of
dedicated communication channels between actors. Our framework
follows this proposal; each channel of communication is associated
to a Model of Computation to describe how the messages should be
exchanged. This solution provides modularity: by reifing channels
of communication, switching MoCs with each other is facilitated
and the communication and computation concerns are separated.

A naive example of synchronization of concurrent processes
is illustrated by Listing 1. This code creates two processes that
communicate through a SharedQueue in Smalltalk. Since reading is
blocking and writing is not, this implicitly describes a Khan Process
Network synchronization scheme.

| c h a n n e l |
c h a n n e l := SharedQueue new .
[[t r u e] w h i l e T r u e : [c h a n n e l n e x t P u t :

s e l f p roduceDa ta]] f o r k .
[[t r u e] w h i l e T r u e : [s e l f p r o c e s s :

c h a n n e l n e x t]] f o r k .

Listing 1. A naı̈ve implementation of Khan Process network

In order to be modular and to enforce reusability, we use the
Adapter design pattern [10]. We implement a MoC as an actor that
is reactive to two messages:

• Put: message sent by a writer process to send data on the
channel;

• Get: message sent by a reader process to read data on the
channel.

Figure 3 shows the principles of the architecture of our prototype.

Figure 3. Principle of the implementation

As illustrated in Figure 3, we have defined a common protocol
for data exchange between a concurrent block and a MoC block. To
send data, a concurrent block (Computation Actor 1) should send
a Put message to the MoC block and wait for an Ack message.
To read data, a concurrent block should send a Get and wait for
a Data message. In the case of MoCs that describe non-blocking
write operations such as KPN or SDF, the MoC actor sends the Ack
message as soon as it receives a Put message. As the MoC actor
does not wait for the reception of a Get message, we can simulate
a non-blocking write operation. Otherwise, the Ack message is
sent when the synchronization between the writer and the reader
processes can occur.

A simple implementation is proposed, based on three main
classes: Actor, Channel and MocActor. The code in the Actor class
does not depend on the used MoC as shown by Listing 2.

r e a d
” Get ”
(s e l f c h a n n e l s a t : # i n p u t) p o s t R e q u e s t : # r e q .
” Data ”
ˆ (s e l f c h a n n e l s a t : # i n p u t) getAck

w r i t e : aData
” Pu t ”

(s e l f c h a n n e l s a t : # o u t p u t) p o s t R e q u e s t :
aData .

”Ack”
(s e l f c h a n n e l s a t : # o u t p u t) getAck

Listing 2. The Actor’s read and write operations

4.2 Implementation
We now illustrate the implementation of Communicating Sequen-
tial Processes, Kahn Process Networks and Synchronous Data
Flows.

4.2.1 Implementing Communicating Sequential Process
Communicating Sequential Process (CSP) were introduced by
Hoare and describes a network of concurrent processes, where
communications are rendez-vous based [13]. Both write and read
operations are blocking. CSP also offers a conditional rendez-vous
mechanism that introduces non-determinism in the Model of Com-
putation. To achieve non-determinism, multiple rendez-vous are
started concurrently. Only the first rendez-vous that can be made
is taken in account. The other rendez-vous are canceled as soon
as the first one succeeded. In order to select which conditional
rendez-vous must be started, a guard is used.

CSP is well suited for modeling systems that require tight syn-
chronization between processes. An example is the dining philoso-
pher problem that can be easily solved with CSP.

In our implementation, the rendez-vous between a producer
and a consumer is managed by a dedicated Actor called CspRen-
dezVous. The CspRendezVous actor implements several methods
that handle incoming messages and execute a rendez-vous. Each
method follows the same principles:

• it is called on reception of a trigger event;
• after reception of a message from a consumer, the method waits

for a message from a producer and vice-versa;
• if a conditional rendez-vous is canceled then the original mes-

sage must be put in queue again;

Figure 4 is an excerpt of the state machine implemented in the
CspRendezVous actor. It details the reception of a Get message from
a reading process.

Figure 4. Part of the state machine of CspRendezVous to manage
the reception of a Get message

A method named executeGet is called after the reception of a
Get message and it waits either for a Put message or a CondSnd
message.

When a Put message is received the method executeRdv is
called. This method performs the rendez-vous by sending an Ack
message to the producer and a Data message to the consumer.

When a CondSnd message is received, a CheckIsFirst message
is sent to the producer. This message informs the producer that
the rendez-vous is possible. The producer notifies the first ready

4 2013/9/6

CspRendezVous by sending an IsFirst message to the actor, which
calls the executeRdv method. An example of the sequence of mes-
sages that are sent during a conditional communication is shown
Figure 5.

Figure 5. Example of sequence of messages sent during a Condi-
tional communication

Conditional rendez-vous are initiated by a specific actor that
is able to start several actors which are competing to perform a
rendez-vous. This actor reacts to a Get or a Put message sent by an
application actor. It also checks which rendez-vous is successful at
the first place and cancels the others.

4.2.2 Implementing Kahn Process Networks
The Kahn Process Network MoC describes a network of com-
municating parallel processes as an oriented graph [16]. In KPN,
the communication are made through non-blocking write opera-
tions and blocking read operations. The communications are made
through channels with an infinite FIFO. Processes in KPN can be
created during the execution of the process network.

Kahn Process Network is useful in the modeling of systems
based on data flows. Signal processing or scientific computing
applications are example of data flow applications.

Our implementation is based on Kahn and McQueen’s imple-
mentation proposal [17]. The FIFO of a channel is managed by a
dedicated actor called KpnChannel. The attributes of this actor are:

queue The FIFO managed by the actor.

hungryConsumer A consumer of data that is blocked on a read
operation on the FIFO.

isFinishReceived The flag that indicates that no more data will be
received from the producer.

monitor A specific actor that manages the different FIFOs.

The KpnChannel actor may receive three different messages: Get,
Put, and Finish.

Figure 6 describes the state machine implemented in the actor
KpnChannel.

When receiving a Get message, the KpnChannel actor checks
if its queue is empty. If there is data in the queue, the KpnChannel
sends the head of the queue to the consumer in a Data message.
Otherwise, the KpnChannel checks if the isFinishReceived flag is
set. In such a case, the KpnChannel sends the Finish message to the
consumer and the KpnChannel kills itself. Otherwise, the attribute
blockedConsumer is set and a message ReadBlocked is sent to the
monitor. Then the KpnChannel waits for new messages.

When receiving a Put message, the KpnChannel first sends
an Ack message to the producer. Then it checks if there is an
hungryConsumer. In such a case, the KpnChannel sends a message
Data to the hungryConsumer and a message ReadUnblocked to
the monitor. The hungryConsumer attribute is set to null and the
KpnChannel waits for new messages. Otherwise, the data received

from the producer is enqueued and the KpnChannel waits for new
messages.

When receiving a Finish message, if there is an hungryCon-
sumer, the KpnChannel sends to it a Finish message and kills it-
self. Otherwise, the flag isFinishReceived is set to true and the Kp-
nChannel goes on waiting for new messages.

The attribute monitor is a reference to an actor of kind Kpn-
Monitor. Its role is to detect deadlocks. A deadlock occurs when
all active process are blocked into a read operation. So the Kpn-
Monitor keeps a count of the active process and of those blocked in
a read operation.

4.2.3 Implementing Synchronous Data Flow
Like KPN, Synchronous Data Flow (SDF) describes communica-
tion with non-blocking write and blocking read operations [21].
SDF adds the constraint that the production or consumption rates
on the communication links are constant and well known. As a re-
sult SDF offers the ability to pre-determine a scheduling of the in-
volved processes. A SDF process begins by reading the required
amount of data on each of its inputs, then performs its processing
and finally writes a given amount of data on each of its outputs.

Unlike KPN, SDF can only be used when the data production
rate of the different processes are known, as is the case in most of
the signal processing applications.

Our implementation use a multithreaded dynamic schedule as
described by Schaumont [28]. The actors of the application work
concurrently. The scheduling of the actors is left to the underlying
virtual machine.

The actor SdfChannel has an attribute nbElemToRead which
defines how much data must be read by the consumer at each read
operation. If there is not enough data in the FIFO then the read
operation is blocked until the required amount of data is reached.

The SdfChannel actor receives either a Get or a Put message.
The content of a Put message is a list of data. This list is dequeued
to be inserted in the FIFO.

When a Get message is received, the size of the FIFO is com-
pared to the nbElemToRead attribute. If it is superior or equal,
nbElemToRead elements of the FIFO are dequeued to populate a
List of data that is sent to the consumer. Otherwise, the consumer
is blocked until enough data is available.

4.3 Using Scala and Smalltalk
Scala and Smalltalk both provide interesting programming mecha-
nisms. An example is the collection manipulation methods such as
map and filter in Scala and collect and select in Smalltalk. These
methods ease the manipulation of data structures. An advantage of
Scala is that it has built-in actors. In various projects of sea floor
observatories [6, 14] the Java language is used. Since Scala runs on
the Java Virtual Machine, it is possible to reuse existing code and
to integrate third-party code written in Java in our framework.

A big difference between Scala and Smalltalk lies in the type
system. Even if Scala implements a type inference mechanism, it
remains a statically typed language. It has the advantage of raising
some errors at compile time. However, the type of each variable
has to be either inferred from the context or made explicit by the
programmer. It has an impact on the use of generic messages for
the communication between actors. For example, the Put message
has an argument with the generic type Any (equivalent of Object
in Smalltalk). The processing of the Any message in a consumer
process requires type checking and casting before a clean use of
the value carried by the Data message.

On the contrary, Smalltalk is dynamically typed: there is no
need for type checking and casting. This produces a more readable
code than in a statically typed language. Moreover, dynamic typing

5 2013/9/6

Figure 6. State machine of the actor KpnChannel

seems more suited for fast prototyping purposes as changing the
type of a variable does not affect the whole code.

p r o c e s s

[[| ack d a t a |
” r e a d r e q u e s t , may be b l o c k i n g ”
ack : = (s e l f c h a n n e l s a t : # o u t p u t) g e t R e q u e s t .
” r e a d da ta , may be b l o c k i n g ”
d a t a : = (s e l f c h a n n e l s a t : # i n p u t) g e t R e q u e s t .
(s e l f c h a n n e l s a t : # o u t p u t) pos tAck : d a t a .
(s e l f c h a n n e l s a t : # i n p u t) pos tAck : ack]
r e p e a t] f o r k

Listing 3. The CSP MoC in Smalltalk

p r o c e s s
”Two p r o c e s s e s ”
[[” r e a d da ta , may be b l o c k i n g ”
s e l f f i f o n e x t P u t :

(s e l f c h a n n e l s a t : # i n p u t) g e t R e q u e s t .
” a u t o m a t i c a c k n o l e d g e ”
(s e l f c h a n n e l s a t : # i n p u t)

pos tAck : # a c k n o l e d g e
] r e p e a t] f o r k .

[[” r e a d r e q u e s t , may be b l o c k i n g ”
(s e l f c h a n n e l s a t : # o u t p u t) g e t R e q u e s t .
” f i f o a c c e s s r e q u e s t , may be b l o c k i n g ”
(s e l f c h a n n e l s a t : # o u t p u t) pos tAck :

s e l f f i f o n e x t
] r e p e a t] f o r k

Listing 4. The KPN MoC in Smalltalk

The listings 3 and 4 illustrate how the behavior divergence is imple-
mented. The MocActor object is an abstract common super class
of CSPMocActor and KPNMocActor; it implements the process
method, which schedules the get/ack operations over the IOs chan-
nels. Every channel has two SharedQueues and support posting and
requesting operations over them. Additionally, the MocActor owns
an auxiliary SharedQueue named FIFO. This shared queue supports
temporary storage of data for KPN and SDF. It’s useless for CSP,
though.

5. Experimentation
5.1 Description of the Experimentation
In the MeDON project[14], we deployed a high-definition camera.
This camera produces a lot of images that are manually processed.
We create a smart sensor using the HD camera as the sensing
device. The smart sensor embeds image processing algorithms.

These algorithms are used on the acquired data before they are
sent to a ground-based server. In the following, we simplified the
example. The acquisition part consists in reading an image file on
the disk. An example of image processing algorithm is the Sobel
edge detection algorithm. The data sending consists in writing the
result of the Sobel algorithm on the disk.

5.2 Exploring the Logical Architecture Alternatives
The exploration phase intends to determine the best solution when
describing the architecture as a set of communicating processes.
Not all of the processes have a direct mapping with a physical
device or sensor. Instead, the analysis focuses on functions being
executed, with a tradeoff to be found out, between simplicity of
simulation and accuracy of the modeled behavior.

5.2.1 Presentation of the Architecture Proposals
Multiple architectures may be used for this example. The simplest
alternative makes each block of the functional architecture become
a concurrent entity. Another possible breakdown is to decompose
the Sobel algorithm into multiple concurrent entities. This architec-
tural alternative is shown Figure 7.

Figure 7. Alternative for the logical architecture

The ImageReader is responsible for reading the image from a
file. For each pixel and for each color plane, the ImageReader cre-
ates a list of nine elements containing the different values associ-
ated to a pixel and its neighbors.

For each color plane, two convolution and a sum are required.
Each of them are transformed into concurrent entities. The Im-
ageWriter is responsible for creating an image from the values
coming from the sums.

As there are several concurrent entities, we need to ensure the
communication and synchronization of these entities. For example,
we need to ensure that the sum is performed on data that concerns
the right pixel.

6 2013/9/6

5.2.2 Implementation using only CSP
The topology described in Figure 7 can be implemented directly
using actors. However, the order of the messages received by the
different actors is not guaranteed.

One possible solution to this issue is to use a highly synchro-
nized system (rendez-vous based). This ensures that producer and
consumer work at the same rate. As no data is produced until the
previous one is not consumed there will be no inversion of data.
However, this imposes strong constraints on the real system. It lim-
its the number of processes able to run in parallel.

Each ellipse in Figure 7 is implemented as an actor with a com-
putation role. Each arrow is implemented by a CspChannel actor.
Each CspChannel actor handle the rendez-vous between two com-
putation actors as described by CSP. The code of a computation
actor contains instructions to send messages to and receive mes-
sages from CspChannel actors. These instructions are the only dif-
ferences due to the use of our framework rather than a purely ac-
tor based implementation. An excerpt of the modified topology of
the application, modeled based on CSP, is shown in Figure 8. The
CspChannel actors that are added are represented in black.

Figure 8. Topology of the application using CSP

The use of CSP prevents an actor from acting on data before the
tasks of the previous actors in the flow are not completed on their
own input data. As a result, the order of the data at the inputs of the
SumActor is kept.

The use of our implementation does not affect the logic of the
actors composing the system but only the way data are exchanged.
This agility only requires that for each sending of data we add code
to receive the acknowledge from the MoC actors. In the case of
receiving data, we have to add code to send a get request to the
MoC actor and the code to wait for its answer.

5.2.3 Implementation using only KPN
In our previous implementation, we used CSP to make the different
actors communicate. It ensures the correct treatment of the pixels
making the input image. CSP puts strong constraints on the system.
As the synchronization between the application actors is obtained
through rendez-vous, the number of actors that are able to work
concurrently is limited. This may reduce the overall performance
of the application.

These constraints are useful when developing an application.
They simplify the debugging process through offering a more se-
quential scheme to the designer. This level of constraints may not
be necessary in the final application. Exploration - as previously
stated - remains one of our more critical motivations beyond this
work. The ability to switch between different MoCs is a key facil-
ity to support agility and incremental refinements at no cost in term
of readability and understanding versus final performance tradeoff.

Another alternative to CSP channels, is to use a FIFO per re-
quired communications between two computation actors. This re-
duces the risks of reading data coming from the same sender twice.
Besides, blocking read operation ensures that the consumer process
will wait for incoming data. This corresponds to the KPN MoC.

Figure 9. Modification of the topology using KPN channels

In contrast to CSP, KPN enables a process that produces data to
keep running while the consumer of its data is also running. This
allows to have more processes running in parallel than with CSP.
However, there is a lost of control over the communications. It is
not possible to ensure that the system will have enough memory for
the different FIFOs.

We made an implementation of this alternative with our frame-
work using KpnChannel actors. No modification is required on the
application actors as we defined a common interface for all im-
plementation of MoCs. The only changes occur in the description
of the topology of the application to obtain the topology shown in
Figure 9. New instances of kind KpnChannel have to be created to
replace instances of CspChannel. We are able to quickly change
the type of communication or synchronization between actors in
the application we would like to prototype.

5.3 Benefits of the Smalltalk debugger
From our point of view, in these experiments the main advantage
of Smalltalk over Scala is its debugger.

Firstly the Smalltalk debugger is integrated in the development
environment. When a fault occurs in an application the debugger is
started. It enables to perform a post-mortem analysis of the appli-
cation. It is possible to check the state of the different components
of the application. On the contrary, Scala only provides a message
corresponding to the exception that occurs in the running program.
The advantage of Smalltalk is the ability to analyze deeply the rea-
son of a failure as all information are available.

Secondly the Smalltalk debugger enables to make on-line mod-
ification on the code of the running application and on the values of
the different variables. The Scala debugger only to modify the val-
ues of the variables. The Smalltalk’s debugger provides the ability
to make a correction on the application and to continue the execu-
tion. It is an asset when performing fast prototyping as there is no
need to perform the Code - Compile - Run cycle again.

The Redpill [20] environment reproduces most of the Smalltalk
debugger features at a hardware level. This is critical as only hard-
ware emulation can support scalability; at mid-term, we want to ad-
dress massive sensor networks. Since Redpill has been developed
using Cincom Visualworks, and is MoC oriented - despite only CSP
is supported at this time - it offers a sound path to integrate our
modeling and evaluation framework with hardware synthesis. Not
only extending the set of supported MoCs makes sense, but it is
part of our strategic research plan and lies at the heart of several
key projects.

6. Conclusion and Future Work
Smart sensors appear as a solution for coping with the large amount
of data acquired by a sea floor observatory. However they come at
the price of an increased complexity. When designing the embed-
ded software of a smart sensor the biggest challenges come from
its inherent parallelism and concurrency.

In this paper we explored the use of different Models of Compu-
tations for modeling smart sensors. We created dedicated actors for

7 2013/9/6

the behavior of the communication described by the MoCs. This
enables to separate the computations from the communications and
synchronizations. Moreover, we defined a common protocol of data
exchange between the computation actors and the MoC actors. This
enables to have a modular simulation framework for concurrent ap-
plications defined with Models of Computations. This framework
can be used to help to define a candidate architecture for concurrent
applications.

In future work we will realize an hardware emulation of such
smart sensors, with no loss in term of observability and control-
lability of the execution. This will offer both faster execution and
scalable modeling. This direction takes a direct benefit from the
RedPill framework. Next, system integration will be considered.
Multiple abstraction layers and on-demand refinements will sup-
port addressing (smart) sensor networks. It’s a second dimension
for scalability, with qualitative enhancements in addition to quan-
titative scaling. This second direction will benefit from previous
work that we have led on the Cometa and Biniou frameworks.

Acknowledgments
This work has been done with the financial support of the French
Délégation Générale de l’Armement and of the Région Bretagne.

References
[1] Erlang programming language. URL http://www.erlang.org/.
[2] G. Agha. Actors: a model of concurrent computation in distributed

systems. MIT Press, Cambridge, MA, USA, 1986. ISBN 0-262-
01092-5.

[3] A. Bergel, W. Harrison, V. Cahill, and S. Clarke. Flowtalk: language
support for long-latency operations in embedded devices. Software
Engineering, IEEE Transactions on, 37(4):526–543, 2011.

[4] M. Botts and A. Robin. Opengis sensor model language (sensorml)
implementation specification. OpenGIS Implementation Specification
OGC, pages 07–000, 2007.

[5] J.-P. Briot. Actalk: A testbed for classifying and designing actor
languages in the smalltalk-80 environment. In Proceedings ECOOP,
volume 89, pages 109–129, 1989.

[6] Data Management and Archiving System Team. Neptune and venus
data management and archiving system (dmas) preliminary design
review. Technical report, Neptune Canada, 2006.

[7] P. I. Diallo, J. Champeau, and V. Leilde. An approach for describing
concurrency and communication of heterogeneous systems. In Pro-
ceedings of the Third Workshop on Behavioural Modelling, BM-FA
’11, pages 56–63, 2011. ISBN 978-1-4503-0617-1.

[8] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong. Taming heterogeneity - the ptolemy
approach. In Proceedings of the IEEE, pages 127–144, 2003.

[9] F. Fleurey, B. Morin, A. Solberg, and O. Barais. Mde to manage
communications with and between resource-constrained systems. In
Model Driven Engineering Languages and Systems, pages 349–363.
Springer, 2011.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1995. ISBN 0-201-
63361-2.

[11] P. Haller and F. Sommers. Actors in Scala. Concurrent Programming
for the multi-core era. Artima, 2012.

[12] C. Haskins, K. Forsberg, and M. Krueger. Systems engineering hand-
book. INCOSE. Version, 3.2, 2010.

[13] C. A. R. Hoare. Communicating sequential pro-
cesses. Commun. ACM, 21(8):666–677, Aug. 1978.
ISSN 0001-0782. doi: 10.1145/359576.359585. URL
http://doi.acm.org/10.1145/359576.359585.

[14] Interreg IVA. Marine edata observatory network, 2013. URL
http://medon.info/.

[15] A. Jantsch and I. Sander. Models of computation in the design process.
2005.

[16] G. Kahn. The semantics of simple language for parallel programming.
In IFIP Congress, pages 471–475, 1974.

[17] G. Kahn and D. Macqueen. Coroutines and Networks of
Parallel Processes. Rapport de recherche, 1976. URL
http://hal.inria.fr/inria-00306565.

[18] R. K. Karmani and G. Agha. Actors. In D. A. Padua, editor, Ency-
clopedia of Parallel Computing, pages 1–11. Springer, 2011. ISBN
978-0-387-09765-7.

[19] L. Lagadec and D. Picard. Software-like debugging methodology for
reconfigurable platforms. In IPDPS, pages 1–4. IEEE, 2009.

[20] L. Lagadec and D. Picard. Smalltalk debug lives in the ma-
trix. In International Workshop on Smalltalk Technologies,
IWST ’10, pages 11–16, New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0497-9. doi: 10.1145/1942790.1942792. URL
http://doi.acm.org/10.1145/1942790.1942792.

[21] E. Lee and D. Messerschmitt. Synchronous data flow. Proceedings
of the IEEE, 75(9):1235 – 1245, sept. 1987. ISSN 0018-9219. doi:
10.1109/PROC.1987.13876.

[22] E. A. Lee and S. A. Seshia. Introduction to embedded systems: A
cyber-physical systems approach. Lee & Seshia, 2011.

[23] S. Marr. Supporting Concurrency Abstractions in High-level Lan-
guage Virtual Machines. PhD thesis, Software Languages Lab, Vrije
Universiteit Brussel, January 2013.

[24] I. C. on Systems Engineering. Incose, 2013. URL
http://www.incose.org/.

[25] R. Robbes, N. Bouraqadi, and S. Stinckwich. An aspect-based multi-
agent system. ESUG 2004 Research Track, page 65, 2004.

[26] A. Robin and M. E. Botts. Creation of specific sensorml process
models. Earth System Science Center-NSSTC, University of Alabama
in Huntsville (UAH), HUNTSVILLE, AL, 35899, 2006.

[27] I. Sander and A. Jantsch. System modeling and transformational
design refinement in forsyde [formal system design]. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 23
(1):17–32, 2004.

[28] P. R. Schaumont. A Practical Introduction to Hardware/Software
Codesign. Springer, 2012.

[29] J.-P. Schneider, J. Champeau, D. Kerjean, O. K. Zein, Y. Auffret, and
L. Dufrechou. Domain specific modelling applied to smart sensors. In
OCEANS, 2011 IEEE-Spain, pages 1–6. IEEE, 2011.

[30] B. Spencer Jr, M. Ruiz-Sandoval, and N. Kurata. Smart sensing
technology: opportunities and challenges. Structural Control and
Health Monitoring, 11(4):349–368, 2004.

[31] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors for
java. In ECOOP 2008–Object-Oriented Programming, pages 104–
128. Springer, 2008.

[32] B. Sufrin. Communicating Scala Objects. In P. H. Welch, S. Stepney,
F. Polack, F. R. M. Barnes, A. A. McEwan, G. S. Stiles, J. F. Broenink,
and A. T. Sampson, editors, Communicating Process Architectures
2008, pages 35–54, sep 2008. ISBN 978-1-58603-907-3.

[33] E. Technologies. Scade suite, 2013. URL
www.esterel-technologies.com/products/scade-suite/.

[34] D. M. Toma, T. O’Reilly, J. del Rio, K. Headley, A. Manuel, A. Bror-
ing, and D. Edgington. Smart sensors for interoperable smart ocean
environment. In OCEANS, 2011 IEEE-Spain, pages 1–4. IEEE, 2011.

8 2013/9/6

Representing Code History
with Development Environment Events

Martín Dias Damien Cassou Stéphane Ducasse
RMoD

Inria Lille–Nord Europe — University of Lille — Lifl

Abstract
Modern development environments handle information about
the intent of the programmer: for example, they use abstract
syntax trees for providing high-level code manipulation such
as refactorings; nevertheless, they do not keep track of this
information in a way that would simplify code sharing and
change understanding. In most Smalltalk systems, source
code modifications are immediately registered in a trans-
action log often called a ChangeSet. Such mechanism has
proven reliability, but it has several limitations. In this pa-
per we analyse such limitations and describe scenarios and
requirements for tracking fine-grained code history with a
semantic representation. We present Epicea, an early proto-
type implementation. We want to enrich code sharing with
extra information from the IDE, which will help understand-
ing the intention of the changes and let a new generation of
tools act in consequence.

Keywords Source-code change meta-model; Collabora-
tion; Continuous Versioning; Explore-first Programming

1. Introduction
Modern integrated development environments (IDEs) can
have information about the intent of the programmer: they
use abstract syntax trees (ASTs) and provide high-level code
manipulation (such as refactorings [3]). Nevertheless, they
do not keep track of this information in a way that would
simplify code sharing and change understanding. For exam-
ple, after a few hours of work, developers might want to
separately share the different changes they have worked on:
documentation improvements, bug fixes, and feature addi-
tions are better committed separately to facilitate review and
backtracking. If each change were semantically recorded,

[Copyright notice will appear here once ’preprint’ option is removed.]

making separate commits would be much simpler: for exam-
ple, a method renamed could be seen as just one high-level
operation instead of many lines removes and added.

In this paper we describe scenarios, requirements, and an
early prototype, named Epicea,1 for tracking code history
with a semantic representation. Based on Epicea, we want
to enrich code sharing with extra information from the IDE,
which will help understanding the intention of the changes
and let tools act in consequence. For example, when a library
developer updates an API (e.g., by renaming a method), he
can provide a dedicated semantic change to the library users
so that they can update their client code automatically.

Structure of the paper. In Section 2 we describe the prob-
lem in current Smalltalk systems. In Section 3 a series of sce-
narios illustrate the key requirements for tracking changes
semantically. We summarise such requirements in Section 4.
We present the design of our prototype in Section 5. Sec-
tion 6 has screenshots of our prototype in action. After a
short overview of related work in Section 7 we conclude in
Section 8.

2. Analysis of Current Smalltalk Systems
In most Smalltalk systems [4] source code modifications are
logged immediately after any editing operation in a transac-
tion log, often called a ChangeSet.2 This transaction log acts
as a tape recording source code changes. The programmer
can navigate different versions of the code without requiring
a traditional version control system (VCS), such as git, svn
and Monticello. In addition, if the execution of the system is
interrupted (e.g., the virtual machine crashes or the process
is killed), then such a log can be explored to recover and
replay the sequence of changes.

While this log mechanism has proven to be reliable over
the years, it has the following problems:

Barely structured text. There is a lack of abstraction. The
log is a text file where each new event is appended at
the end, as a sequence of chunks. Instead of represent-

1
http://smalltalkhub.com/#!/~MartinDias/Epicea

2
http://wiki.squeak.org/squeak/674

1 2013/9/5

ing the events in a declarative format, the events are
written as executable commands. The idea is that by re-
evaluating them the original change is reproduced. This
format makes it difficult for tools to recover semantic in-
formation.

Elementary model. A ChangeSet records only class, pack-
age and method definitions. As a result, ChangeSet
lacks information about class modifications or high-level
events such as refactorings.

Mixing sources and system events. ChangeSets mix source
management (the state of a system) with system event
recording (the steps to go from one state to the next).
The same model and format is used for ChangeSets and
the traditional in Smalltalk fileIn/fileOut mechanism. As
a result, not all the events can be recorded (e.g., refac-
torings, package loading). In addition, the granularity of
the events is often too coarse, leading to problems on re-
covery. For example, instance variable addition and class
addition are indistinguishable.

Losing intermediate states. ChangeSets only keeps track
of what entities (e.g., a class or method) has been mod-
ified. The intermediate states of such entities cannot be
recovered but just the current one.

In this paper we introduce the notions of Log and View to
fix the above-mentioned problems.

3. Scenarios for Changes as Programming
Activity Traces

In this section we present several scenarios that illustrate the
use of logs and their interplay in the IDE. We first define the
vocabulary used in the rest of this paper.

Image. In a Smalltalk environment, an image is a snapshot
of all the objects of the system, i.e., a memory dump: this
includes both the objects of the software under execution
but also the classes and methods at the moment of the
snapshot. An image acts as a cache with preloaded pack-
ages and initialised objects.

Session. An image can be launched, modified, and saved
many times. We call each one of these periods a session.

Operation. We refer with this word to an action performed
in a session. An operation can either have a duration in
time (e.g., an expression evaluation) or be a punctual fact
(e.g., a class addition). An operation can trigger other
operations. In Figure 1, the list in the top represents a
session where the developer has done three operations:
(1) he has loaded the version 1 of a package named P
using a VCS; (2) he has undone the addition of the class
A from package P; (3) he has added a new class named
B to package P. The light grey bullets and the horizontal
alignment of the elements represent triggering (undoing
the addition of class A has triggered the removal of A).

Event. We define an event as a representation of an opera-
tion. Some events represent a modification in the source
code; we refer to them as code changes. Sometimes we
say that an event triggered another event when the opera-
tion that the former event represents triggered the opera-
tion that the latter event represents.

Log. A log contains events recorded from the IDE. This
includes, for example, class additions, method redefini-
tions, and refactorings. If the user does not save or if the
system crashes, the log and the image will become desyn-
chronised: i.e., the log will contain information that is not
in the image.

Code unit. In this paper we call code unit to a package,
class, trait or method.

View. The log can have an overwhelming amount of infor-
mation recorded about the system. This makes it difficult
to understand the changes in a particular code unit. To
solve this problem we include the concept of view. In Fig-
ure 1, views for the class A and package P are shown. The
history of A is simple: it was added and then removed.
The view of P is more complex: first, the class A was
added, then this change got undone, and finally the class
B got added (creating an implicit branch in the view).
Each view has a head, marked as

⌥⌃ ⌅⇧� h [X] , which repre-
sents the current state in the system for the code unit X.
The current head will be the parent of the next change
that affects this code unit and the head will be updated to
point to this new change.

Commit. We call commit a particular version of source code
stored in a VCS. In Figure 1, we mark the last change
performed during the load of version 1 with the tag

P version 1 .

new session

load package P version 1

add package P

add A P version 1

undo (add A)

remove A

add B

Log

add package P

add A P version 1

add B

⇤⇥ ��� h [P]

View of package P

add A

remove A

⇤⇥ ��� h [A]

View of class A

Figure 1. Example.

3.1 Logs Transcend Sessions
Since a code unit can be edited over multiple sessions, the
history of a code unit transcend history of images. In this
section we discuss some scenarios that crosscut sessions.

2 2013/9/5

Tie the events of several sessions. In Figure 2 we show the
history of the package P accumulated over three sessions.
The view ignore session boundaries.

new session

add package P

add A

end session

new session

add A>>m

end session

new session

add A>>k

Log over three sessions

add package P

add A

add A>>m

add A>>k

⇤⇥ ��� h [P]

View of package P

Figure 2. Views ignore session boundaries.

Recover lost changes after the IDE crashed. In Figure 3,
the user created a package P with a class A and committed
the package P to a VCS. After adding methods m and k, the
IDE crashes. The user reopens the IDE, visualises the log
of the crashed session, and redoes the lost changes. Such
redone changes are shown as a new branch in the view. Each
of those redone changes has a redone tag. Such a tag always
references the original entry so the developer can analyse the
event in the context where it was originally logged.

new session

add package P

add A P version 1

save P version 1

add A>>m

add A>>k

< crash >

Log (1)

add package P

add A P version 1

add A>>m

add A>>k

⇤⇥ ��� h [P]

View of package P (1)

new session

load P version 1

add A P version 1

visualise "crashed session"

Log (2)

add package P

add A P version 1

⇤⇥ ��� h [P]

add A>>m

add A>>k

View of package P (2)

new session

load P version 1

add A P version 1

visualise "crashed session"

redo after (save P version 1)

add A>>m

add A>>k

Log (3)

add package P

add A P version 1

add A>>m

add A>>k

add A>>m redone

add A>>k redone

⇤⇥ ��� h [P]

View of package P (3)

Figure 3. Redo lost changes after the IDE crashed.

Reload in fresh image. Since during experimentation im-
ages sometimes become unstable, it is a good practice to reg-
ularly rebuild from scratch the current head of development

in a fresh image. Current infrastructure supports such prac-
tice by loading the code from the VCS, at the expense of
losing the versions that occurred between two commits. The
log overcomes such problems.

3.2 Code Operations
In this section we discuss some scenarios where navigation
to previous versions of code or reorganisation of changes are
important.

Undoing a code change. In Figure 4 we show that revert-
ing the addition of method A»m has different effects on the
different views. In the package and class views, the original
method additions are shown in grey as a branch. In that way,
the original history of events with the original chronology is
available to be browsed. In the A»m view, the undo opera-
tion is seen as a removal of the method. For the A»k view
the operation has no impact. Note that in each view there is
a head pointing to a different event.

new session

add package P

add A

add A>>m

add A>>k (before)

undo (add A>>m)

remove A>>m (after)

Log

add package P

add A

add A>>m

add A>>k

⇤⇥ ��� h (before)

add A>>k redone

⇤⇥ ��� h (after)

View of package P

add A

add A>>m

add A>>k

⇤⇥ ��� h (before)

add A>>k redone

⇤⇥ ��� h (after)

View of class A

add A>>m

⇤⇥ ��� h (before)

remove A>>m

⇤⇥ ��� h (after)

View of method A»m

add A>>k

⇤⇥ ��� h (before)

⇤⇥ ��� h (after)

View of method A»k

Figure 4. Undoing the addition of A»m. The operation has
different effects at package, class and method level.

Grouping changes before committing. When a developer
is working for some time on a project, chances are that he
will perform multiple independent tasks. This happens even
when there is a concrete goal such as implementing a new
feature or fixing a bug: either a typo, or some code that
deserves a refactoring, or any other change that is unrelated
to the goal can appear. Tools should make it easy for a
developer to fix the off-topic issue and let him either mark
it or split it to a different branch so the main branch stays
focused and cohesive. We need a kind of cherry picking
of the elements we want to commit. In Figure 5 we show
an example of changes done in the package P, where the

3 2013/9/5

developer added a class B with some methods, and in the
middle found and fixed a typo in the comment of A»m. He
decides to create a new branch to keep this change separated
from the other ones. He also adds a comment to the separated
change (modify A»m) with a ’typo fix’ tag.

new session

load P version 37

. . .

add B

add B>>x

modify A>>m

add B>>y

add B>>z

Log (before)

. . .

add B

add B>>x

modify A>>m (typo fix)

add B>>y

add B>>z

⇤⇥ ��� h [P]

View of package P (before)

new session

load P version 37

. . .

add B

add B>>x

modify A>>m

add B>>y

add B>>z

split (modify A>>m)

comment (modify A>>m)

Log (after)

. . .

add B

add B>>x

modify A>>m

add B>>y

add B>>z

modify A>>m redone ’typo fix’

add B>>y redone

add B>>z redone

⇤⇥ ��� h [P]

View of package P (after)

Figure 5. Split changes for doing meaningful commits.

Commenting events. The developer can write arbitrary
comments on an event (or group of events) to facilitate later
understanding. We mentioned this feature in Figure 5, with
the ’typo fix’ tag. Additionally, the system can help the devel-
oper writing comments based on what triggered the related
event.

Condensing code changes. The log might have changes
that neutralise themselves (e.g., a method is added and re-
moved). In addition there are cases where the programmer
may want to forget current history of certain entities. In Fig-
ure 6, we show in an example how the condense operation
works when applied to the package P. Without any optimi-
sation, the operation is done in two main steps: first, undo
the events until the older neutralised event (remove B, add
C, and add B); second, redo only the needed changes (add
C).

Recording refactoring information. Some high-level op-
erations, such as refactorings, group events. In Figure 7,
a method is renamed (A»m) and all senders (B»k) of this
method are updated. Each event related to the refactoring
have a dedicated tag that references the high-level operation.

3.3 Sharing Events
Logs and events can be shared between developers, projects,
and images.

new session

add package P

add A

add B

add C

remove B

Log (before)

add package P

add A

add B

add C

remove B

⇤⇥ ��� h [P]

View of package P (before)

new session

add package P

add A

add B

add C

remove B

condense package P

undo (remove B)

add B

undo (add C)

remove C

undo (add B)

remove B

redo (add C)

add C

Log (after)

add package P

add A

add B

add C

remove B

add C redone

⇤⇥ ��� h [P]

View of package P (after)

Figure 6. Condense operation.

new session

add package P

add A (in package P)

add package Q

add B (in package Q)

add A>>m

add B>>k (which sends #m)

rename A>>m to A>>p

add A>>p

modify B>>k

remove A>>m

Log

add package P

add A

add A>>m

add A>>p ren. . .

remove A>>m ren. . .

⇤⇥ ��� h [P]

View of package P

add package Q

add B

add B>>k

modify B>>k ren. . .

⇤⇥ ��� h [Q]

View of package Q

add A>>m

remove A>>m ren. . .

⇤⇥ ��� h [A>>m]

View of method A»m

add A>>p ren. . .

⇤⇥ ��� h [A>>p]

View of method A»p

Figure 7. Rename A»m to A»p. The method B»k uses it so
it is modified by the refactoring.

4 2013/9/5

Replaying a concrete event. When two projects are forks
from each other, events of one fork can be replayed in the
other.

Replaying the intent of a refactoring. When a library de-
veloper updates an API (e.g., by renaming a method), he can
provide high-level events which can be replayed by library
users so that they can update their client code automatically.

4. Scenarios: an Analysis
We analysed several existing code change representations:
ChangeSets, RingC [7], Cheops [2], NewChangeSystem,3
and DeltaStreams.4 From previous work and the scenarios
presented above we define the following requirements.

4.1 Requirements
1. Replay and undo operations. Starting from the same

or similar system, the information in the log should be
enough for reconstructing the state of the system at any
point of the log.

2. Log must be immediately persisted out of the volatile
memory so information survives IDE crashes.

3. Log entries can have tags, i.e., meta-information. A tag
can reference another entry. Tags can be added after the
entry has been persisted.

4. Events should be represented as first-class entities.

5. The change model should support modelling many dif-
ferent types of changes: structural elementary changes
(method definitions), composed ones (refactorings), and
system changes such as expression evaluation, redo, and
branch creation.

5. Epicea
We implemented Epicea, an early prototype of the log and
the event model. It was developed in Pharo [1]. Epicea model
started as a branch of NewChangeSystem project and then
was deeply modified and extended.

5.1 Event Model
In Figure 8 we show the class hierarchy of events we im-
plemented in Epicea. The most important sub-hierarchy is
the one of CodeChange, which represents the operation that
made the code change, such as class creation, method mod-
ification, etc. Code changes hold enough information about
the operation performed for either reverting the change or
redoing it. Epicea uses Ring definitions to take snapshots of
the involved code units.

We need to record information about the situation in
which events are logged. That is the timestamp when it was
done, the author who did it, the potential event that triggered
it (for example, undoing a method addition triggers a method

3
http://smalltalkhub.com/#!/~EzequielLamonica/NewChangeSystem

4
http://wiki.squeak.org/squeak/6001

Figure 8. The hierarchies of Event and CodeChange used
in our prototype.

removal). This meta-information of the event is stored in log
entries, as explained below.

5.2 Log Model
In Figure 9 an object diagram shows how a log is represented
in the prototype. A log has a head pointing to the entry where
the upcoming entry will be attached. Each entry points to a
parent entry and the content event. In Figure 10 we show the
design we implemented for Epicea. An entry has a dictionary
of tags that allows attaching meta-information (author and
timestamp). In the case of an event that triggers other events,
each of these events has a tag pointing to the triggering event.

6. Revisiting the Scenarios
In Figure 11 an expression was evaluated. It triggered the
load of the package named ConfigurationOfFuel. In turn,
the load triggered many elemental code changes (package,
class and method additions). In Figure 12 we show the log
of an undo operation. The class A has been added in package
P; then two methods have been added (A»m and A»k).
Following, the undo of the addition of the method A»m

5 2013/9/5

. . .

load P version 1

add package P

add A

Log

...

load P version 1

add package P

add class Aa log head

parent

parent

parent

content

content

content

null
entry

parent

Internal representation

Figure 9. Object diagram of an Epicea log.

LogEntry

head
add: aValue

Log

Event

head

parent

Ring
Definition

NullEntry
tags
RegularEntry

content

Figure 10. Design of Epicea logs.

triggered the removal of such method. In Figure 13 we show
a class rename refactoring as it is logged by Epicea.

7. Related Work
SpyWare [5] captures and stores the code changes in a cen-
tralised repository in a extremely fine granularity. SpyWare
records detailed changes such as a line added in a method,
as well as more high-level changes like refactorings. The au-
thors aim at post-mortem comprehension of developer work,
while we focused on helping developers for their day-to-day
work.

CoExist [6] is a Squeak/Smalltalk extension that pre-
serves intermediate development states and provides imme-
diate access to source code and run-time information of pre-
vious development states. CoExist allows for back-in time
easily, automatic forks, inter-branch operations (such as re-

Figure 11. Epicea log browser screenshot: an expression
was evaluated. It triggered the load of the package named
ConfigurationOfFuel. In turn, the load triggered many ele-
mental code changes (package, class and method additions).

Figure 12. Epicea log browser screenshot: Undo.

6 2013/9/5

Figure 13. Epicea log browser screenshot: Class rename
refactoring.

base and cherry-pick). However, the authors do not talk of a
persistence mechanism for the captured code changes. Co-
Exist is not meant to be used to share code between images
and projects. Still, CoExist is a source of inspiration for the
Epicea model.

JET [7] allows analysing the dependencies between VCS
versions. The authors extend the Ring meta-model [8] to per-
form the computations. Epicea uses Ring as well. It would
be interesting to apply JET dependency analysis to logs to
get fine-grained results.

8. Conclusion
Modern tools for sharing code lose extra information from
IDE. We want to work on a new generation of tools that use
such information to help understanding the intention behind
code changes. In this paper we have presented our initial
steps working in this direction. We have first described a se-
ries of scenarios that help discovering main requirements of
our approach. Then, we have analyzed the problems found in
current Smalltalk systems, focusing on the case of Change-
Sets. Finally, we have presented our early prototype with
an overview of the design, as well as some screenshots that
show it in action.

Acknowledgements
This work was supported by Ministry of Higher Education
and Research, Nord-Pas de Calais Regional Council.

References
[1] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien

Pollet, Damien Cassou, and Marcus Denker. Pharo by Exam-
ple. Square Bracket Associates, Kehrsatz, Switzerland, 2009.

[2] Peter Ebraert. First-class change objects for feature-oriented
programming. In Proceedings of the 15th Working Conference

on Reverse Engineering, WCRE’08, pages 319–322. IEEE
Computer Society, 2008.

[3] Martin Fowler, Kent Beck, John Brant, William Opdyke, and
Don Roberts. Refactoring: Improving the Design of Existing
Code. Addison Wesley, 1999. ordered but not received.

[4] Adele Goldberg and Dave Robson. Smalltalk-80: The Lan-
guage. Addison Wesley, 1989.

[5] Romain Robbes and Michele Lanza. SpyWare: a change-aware
development toolset. In Proceedings of the 30th International
Conference on Software Engineering, ICSE’08, pages 847–
850, New York, NY, USA, 2008. ACM.

[6] Bastian Steinert, Damien Cassou, and Robert Hirschfeld. Co-
Exist: Overcoming aversion to change - preserving immediate
access to source code and run-time information of previous de-
velopment states. In DLS’12: Proceedings of the 8th Dynamic
Languages Symposium, DLS ’12, pages 107–118, New York,
NY, USA, 2012. ACM.

[7] Verónica Uquillas Gómez. Supporting Integration Activities in
Object-Oriented Applications. PhD thesis, Vrije Universiteit
Brussel - Belgium & Université Lille 1 - France, October 2012.

[8] Verónica Uquillas Gómez, Stéphane Ducasse, and Theo
D’Hondt. Ring: a unifying meta-model and infrastructure for
Smalltalk source code analysis tools. Journal of Computer Lan-
guages, Systems and Structures, 38(1):44–60, April 2012.

7 2013/9/5

IWST 2013 Selected papers

52

Language-side Foreign Function
Interfaces with NativeBoost

Camillo Bruni Stéphane Ducasse
Igor Stasenko

RMoD, INRIA Lille - Nord Europe, France
http://rmod.lille.inria.fr

Luc Fabresse
Mines Telecom Institute, Mines Douai, France

http://car.mines-douai.fr

Abstract
Foreign-Function-Interfaces (FFIs) are a prerequisite
for close system integration of a high-level language.
With FFIs the high-level environment interacts with
low-level functions allowing for a unique combination of
features. This need to interconnect high-level (Objects)
and low-level (C functions) has a strong impact on the
implementation of a FFI: it has to be flexible and fast
at the same time.

We propose NativeBoost a language-side approach
to FFIs that only requires minimal changes to the
VM. NativeBoost directly creates specific native code
at language-side and thus combines the flexibility of a
language-side library with the performance of a native
plugin.

Categories and Subject Descriptors D.3.3
[Programming Language]: Language Constructs and
Features; D.3.2 [Programming Language]: Language
Classifications—Very high-level languages

Keywords system-programming, reflection, managed
runtime extensions, dynamic native code generation

1. Introduction
Currently, more and more code is produced and avail-
able through reusable libraries such as OpenGL1 or
Cairo2. While working on your own projects using dy-
namic languages, it is crucial to be able to use such ex-
isting libraries with little effort. Multiple solutions exist

1 http://www.opengl.org/
2 http://cairographics.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

Copyright © ACM [to be supplied]. . . $10.00

to achieve access to an external library from dynamic
languages that are executed on the top of a virtual ma-
chine (VM) such as Pharo3, Lua4 or Python5. Figure 1
depicts four possibilities of dealing with new or external
libraries in a high-level language.

Language-side Library. One solution is to re-
implement a library completely at language-side (cf.
Figure 1.a). Even though this is the most flexible solu-
tion, this is often not an option, neither from the tech-
nical point of view (performance penalty), nor from the
economic point of view (development time and costs).

VM Extension. The second one (1.b) is to do a VM
extension providing new primitives that the high-level
language uses to access the native external library. This
solution is generally efficient since the external library
may be statically compiled within the VM. However a
tight integration into the VM also means more depen-
dencies and a different development environment than
the final product at language-side.

VM Plugin. The third solution (1.c) is similar to the
previous one but the extension is factored out of the
VM as a plugin. This solution implies again a lot of
low-level development at VM-level that must be done
for each external library we want to use. Additionally
we have to adapt the plugin for all platforms on which
the VM is supposed to run on.

FFI. A higher-level solution is to define Foreign Func-
tion Interfaces (FFIs) (cf. Figure 1.d). The main ad-
vantage of this approach is that once a VM is FFI-
enabled, only a language extension (no VM-level code)
is needed to provide access to new native libraries. From
the portability point of view, only the generic FFI VM-
plugin has to be implemented on all platforms.

Implementing an FFI library is a challenging task
because of its antagonist goals:
3 http://pharo.org/
4 http://lua.org/
5 http://python.org/

VM

LanguageLanguage

VM PluginVM Plugin

LanguageLanguage

VM

VM ExtensionVM Extension
VM

LanguageLanguage
ExtensionExtension

a)a) b)b) c)c) d)d)

FFIFFI

LanguageLanguage

ExtensionExtension

VM

Figure 1: Comparing different extension mechanisms: a) library implemented completely at language-side running
on a standard VM, b) language using features from a VM extension, c) language using features from a VM plugin,
d) language-side implementation of an extension.

• it must be flexible enough to easily bind to exter-
nal libraries and also express complex foreign calls
regarding the memory management or the type con-
versions (marshalling);

• it must be well integrated with the language (objects,
reflection, garbage collector);

• it must be efficient.
Existing FFI libraries of dynamic languages all have
different designs and implementations because of the
trade-offs they made regarding these goals and chal-
lenges. Typical choices are resorting purely to the VM-
level and thus sacrificing flexibility. The inverse of this
approach exists as well: FFIs can be implemented al-
most completely at language-side but at a significant
performance loss. Both these pitfalls are presented in
more detail in Section 3.

This paper presents NativeBoost-FFI6 an FFI library
at language-side for Pharo that supports callouts and
callbacks, which we present in Section 2. There are at
least two other existing FFI libraries in Pharo worth
mentioning: C-FFI and Alien. Nevertheless, they both
present shortcomings. C-FFI is fast because it is mostly
implemented at VM-level, however it is limited when
it comes to do complex calls that involve non-primitive
types or when we want to define new data types. On the
opposite, Alien FFI is flexible enough to define any kind
of data conversion or new types directly at language-
side but it is slower than C-FFI because it is mostly
implemented at language-side. In essence, NativeBoost-
FFI combines the flexibility and extensibility of Alien
that uses language-side definition for marshalling and
the speed of C-FFI which is implemented at VM-level.
The main originalities of NativeBoost-FFI are:

Extensibility. NativeBoost-FFI relies on as few VM
primitives as possible (5 primitives), essentially to
call native code. Therefore, most of the implemen-
tation resides at language-side, even low-level mech-
anisms. That makes NativeBoost-FFI easily exten-
sible because its implementation can be changed at

6 http://code.google.com/p/nativeboost

any time, without needing to update the runtime
(VM). It also presents a noticeable philosophical
shift, how we want to extend our language in fu-
ture. A traditional approach is to implement most
low-level features at VM-side and provide interfaces
to the language-side. But that comes at cost of less
flexibility and longer development and release cy-
cles. On the opposite, we argue that extending lan-
guage features, even low-level ones, should be done at
language-side instead. This results in higher flexibil-
ity and without incurring high runtime costs which
usually happen when using high-level languages such
as Smalltalk.

Language-side extension. Accessing a new external
library using NativeBoost-FFI involves a reduced
amount of work since it is only a matter of writing
a language-side extension.

Performance. Despite the fact it is implemented
mostly at language-side, NativeBoost-FFI achieves
superior performance compared to other FFI imple-
mentations running Pharo. This is essentially be-
cause it uses automatic and transparent native code
generation at language-side for marshalling.

2. NativeBoost-FFI: an Introduction
This section gives an overview of the code that should
be written at language-side to enable interactions with
external libraries.

2.1 Simple Callout
Listing 1 shows the code of a regular Smalltalk method
named ticksSinceStart that defines a callout to the
clock function of the libc. NativeBoost imposes no
constraint on the class in which such a binding should
be defined. However, this method must be annotated
with a specific pragma (such as <primitive:module:>)
which specifies that a native call should be performed
using the NativeBoost plugin.
ticksSinceStart

<primitive: #primitiveNativeCall
module: #NativeBoostPlugin>

> self
nbCall: #(uint clock ())
module: NativeBoost CLibrary

Code 1: NativeBoost-FFI example of callout declaration
to the clock function of the libc

The external function call is then described us-
ing the nbCall:module: message. The first parameter
(#nbCall:) is an array that describes the signature of C
function to callout. Basically, this array contains the de-
scription of a C function prototype, which is very close
to normal C syntax. The return type is first described
(uint in this example7), then the name of the function
(clock) and finally the list of parameters (an empty
array in this example since clock does not have any).
The second argument, #module: is the module name,
its full path or its handle if already loaded, where to
look up the given function. This example uses a con-
venience method of NativeBoost named CLibrary to
obtain a handle to the standard C library.

2.2 Callout with Parameters
Figure 2 presents the general syntax of NativeBoost-
FFI through an example of a callout to the abs func-
tion of the libc. The abs: method has one argu-
ment named anInteger (cf. ¶). This method uses the
pragma <primitive:module:error:> which indicates
that the #primitiveNativeCall of the #NativeBoost-
Plugin should be called when this method is executed
(cf. ·). An errorCode is returned by this primitive if it
fails and the regular Smalltalk code below is executed
(cf. ¸). The main difference with the previous example
is that the abs function takes one integer parameter. In
this example, the array #(uint abs(int anInteger))
passed as argument to #nbCall: contains two impor-
tant information (cf. ¹). First, the types annotations
such as the return type (uint in both examples) and ar-
guments type (int in this example). These types anno-
tations are then used by NativeBoost-FFI to automati-
cally do the marshalling between C and Pharo values as
illustrated by the next example. Second, the values to
be passed when calling out. In this example, anInte-
ger refers to the argument of the abs method, meaning
that the value of this variable should be passed to the
abs C function. Finally, this abs function is looked up
in the libc whose an handle is passed in the module:
parameter (cf. º).

7 The return type of the clock function is clock_t, but we delib-
erately used uint in this first example for the sake of simplicity
even if it is possible to define a constant type in NativeBoost.

abs: anInteger
 <primitive: #primitiveNativeCall
 module: #NativeBoostPlugin
 error: errorCode>
 ^ self
 nbCall: #(uint abs(int anInteger))
 module: NativeBoost CLibrary

abs: anInteger
 <primitive: #primitiveNativeCall
 module: #NativeBoostPlugin
 error: errorCode>
 ^ self
 nbCall: #(uint abs(int anInteger))
 module: NativeBoost CLibrary

11
22

33

44
55

Figure 2: Example of the general NativeBoost-FFI call-
out syntax

2.3 Automatic Marshalling of Known Types
Listing 2 shows a callout declaration to the getenv
function that takes one parameter.
getenv: name

<primitive: #primitiveNativeCall
module: #NativeBoostPlugin>

> self
nbCall: #(String getenv(String name)
module: NativeBoost CLibrary

Code 2: Example of callout to getenv

In this example, the NativeBoost type specified for
the parameter is String instead of char* as specified
by the standard libc documentation. This is on pur-
pose because strings in C are sequences of characters
(char*) but they must be terminated with the special
character: \0. Specifying String in the #nbCall: array
will make NativeBoost to automatically do the argu-
ments conversion from Smalltalk strings to C strings
(\0 terminated char*). It means that the string passed
will be put in an external C char array and a \0 char-
acter will be added to it at the end. This array will be
automatically released after the call returned. This is an
example of automatic memory management of Native-
Boost that can also be controlled if needed. Obviously,
the opposite conversion happens for the returned value
and the method returns a Smalltalk String. This exam-
ple shows that NativeBoost-FFI accepts literals, local
and instance variable names in callout declarations and
it uses their type annotation to achieve the appropriate
data conversion. Table 1 shows the default and auto-
matic data conversions achieved by NativeBoost-FFI.

Listing 3 shows another example to callout the
setenv function. The return value will be converted to a
Smalltalk Boolean. The two first parameters are speci-
fied as String and will be automatically transformed in
char* with an ending \0 character. The last parameter
is 1, a Smalltalk literal value without any type specifica-
tion and NativeBoost translates it as an int by default.
setenv: name value: value

<primitive: #primitiveNativeCall
module: #NativeBoostPlugin>

> self

Primitive Type Smalltalk Type
uint Integer
int Integer

String ByteString
bool Boolean

float Float
char Character
oop Object

Table 1: Default NativeBoost-FFI mappings between
C/primitive types and high-level types. Note that oop
is not a real primitive type as no marshalling is applied
and the raw pointer is directly exposed to Pharo.

nbCall: #(Boolean setenv(String name,
String value,
1)

module: NativeBoost CLibrary

Code 3: Example of callout to setenv

Another interesting example of automatic mar-
shalling is to define the abs method (cf. Figure 2) in
the SmallInteger class and passing self as argument
in the callout. In such case, NativeBoost automatically
converts self (which is a SmallInteger) into an int.
This list of mapping is not exhaustive and NativeBoost
also supports the definition of new data types and new
conversions into more complex C types such as struc-
tures (cf. Section 4).

2.4 Supporting new types
The strength of language-side FFIs appears when it
comes to do callouts with new data types involved.
NativeBoost-FFI supports different possibilities to in-
teract with new types.

Declaring structures. For example, the Cairo li-
brary8 provides complex structures such as cairo_-
surface_t and functions to manipulate this data type.
Listing 4 shows how to write a regular Smalltalk class to
wrap a C structure. NativeBoost only requires a class-
side method named asNBExternalType: that describes
how to marshall this type back and forth from na-
tive code. In this example, we use existing marshalling
mechanism defined in NBExternalObjectType that just
copies the structure’s pointer and stores it in an instance
variable named handle.

AthensSurface subclass: #AthensCairoSurface
instanceVariableNames: ’handle’.

AthensCairoSurface class>>asNBExternalType: gen
"handle iv holds my address (cairo_surface_t)"

8 http://cairographics.org

> NBExternalObjectType objectClass: self

Code 4: Example of C structure wrapping in Native-
Boost

Callout with structures. Listing 5 shows a callout
definition to the cairo_image_surface_create func-
tion that returns a cairo_surface_t* data type. In
this code example, the return type is AthensCairo-
Surface directly (not a pointer). When returning from
this callout, NativeBoost creates an instance of Athen-
sCairoSurface and the marshalling mechanism stores
the returned address in the handle instance variable of
this object.
primImage: aFormat width: aWidth height: aHeight

<primitive: #primitiveNativeCall
module: #NativeBoostPlugin
error: errorCode>

>self nbCall: #(AthensCairoSurface
cairo_image_surface_create (int aFormat,

int aWidth,
int aHeight))

Code 5: Example of returning a structure by reference

Conversely, passing an AthensCairoSurface object
as a parameter in a callout makes its pointer stored
in its handle iv (cf. Listing 6) to be passed. Since the
parameter type is AthensCairoSurface in the callout
definition, NativeBoost also ensures that the passed
object is really an instance of this class. If it is not,
the callout fails before executing the external function
because passing it an address on a non-expected data
could lead to unpredicted behavior.
primCreate: cairoSurface

<primitive: #primitiveNativeCall
module: #NativeBoostPlugin>

>self nbCall: #(
AthensCairoCanvas cairo_create (

AthensCairoSurface cairoSurface))

Code 6: Example of passing a structure by reference

Accessing structure fields. In NativeBoost, one
can directly access the fields of a structure if needed,
even if it is not a good practice from the data encapsula-
tion point of view. Nevertheless, it may be mandatory to
interact with some native libraries that do not provide
all the necessary functions to manipulate the structure.
Listing 7 shows an example of a C struct type definition
for cairo_matrix_t.
typedef struct {

double xx; double yx;
double xy; double yy;
double x0; double y0;

Memory Address Marshalling Constraint
C-managed struct C heap fixed passed by reference must be freed
Pharo-managed struct Object memory variable passed by reference may move

or passed by copy costly

Table 2: Wrapping structures possibilities in NativeBoost

} cairo_matrix_t;

Code 7: Example external type to convert back and
forth with the Cairo library

Listing 8 shows that the NBExternalStructure of
NativeBoost-FFI can be subclassed to define new types
such as AthensCairoMatrix. The description of the
fields (types and names) of this structure is provided
by the fieldsDesc method on the class side. Given this
description, NativeBoost lazily generates field accessors
on the instance side using the field names.
NBExternalStructure

variableByteSubclass: #AthensCairoMatrix.

AthensCairoMatrix class>>fieldsDesc

> #(double sx; double shx;
double shy; double sy;
double x; double y;)

Code 8: Example of NativeBoost-FFI definition of an
ExternalStructure

Listing 9 shows a callout definition to the cairo_-
matrix_multiply function passing self as argument
with the type AthensCairoMatrix*. NativeBoost han-
dles the marshalling of this object to a struct as defined
in the fieldsDesc.
AthensCairoMatrix>>primMultiplyBy: m

<primitive: #primitiveNativeCall
module: #NativeBoostPlugin
error: errorCode>

"C signature"
"void cairo_matrix_multiply (

cairo_matrix_t *result,
const cairo_matrix_t *a,
const cairo_matrix_t *b);"

>self nbCall: #(void cairo_matrix_multiply
(AthensCairoMatrix * self,
AthensCairoMatrix * m ,
AthensCairoMatrix * self))

Code 9: Example of callouts using cairo_matrix_t

Memory management of structures. Table 2
shows a comparison between C-managed and Pharo-
managed structures. The first ones are allocated in the
C heap. Their addresses are fixed and they are passed
by reference during a callout. But the programmer must

free them by hand when they are not needed. The sec-
ond ones are allocated in the Pharo object-memory.
Their addresses are variable since their enclosing ob-
ject may be moved by the garbage collector. They can
either passed by copy which is costly or by reference.
Passing a reference may lead to problems is the C func-
tion stores the address and try to access it later on since
the address may changed.

2.5 Callbacks
NativeBoost supports callbacks from native code. This
means it is possible for a C-function to call back into the
Pharo runtime and activate code. We will use the simple
qsort C-function to illustrate this use-case. qsort sorts
a given array according to the results of a compare
function. Instead of using a C-function to compare the
elements we will use a callback to invoke a Pharo block
which will compare the two arguments.
bytes := #[120 12 1 15].
callback := QSortCallback on: [:a :b |

(a byteAt: 0) -- (b byteAt: 0)].

self ffiQSort: bytes
length: bytes size
compareWith: callback

Code 10: Example of callout passing a callback for
qsort

Code 10 shows the primary Pharo method for invoking
qsort with a QSortCallback instance for the compare
function. In this example qsort will invoke run the
Pharo code inside the callback block to compare the
elements in the bytes array.

To define a callback in NativeBoost we have to create
a specific subclasses for each callback with different
argument types.

NBFFICallback
subclass: #QSortCallback.

NBFFICallback class>>signature

>#(int (NBExternalAddress a, NBExternalAddress b))

Code 11: Example of callback definition

Code 11 shows QSortCallback which takes two generic
external addresses as arguments. These are the argu-
ment types that are being passed to the sort block in
Example 10.

ffiQSort: base len: size compare: qsortCallback
<primitive: #primitiveNativeCall
module: #NativeBoostPlugin>

"C qsort signature"
"void qsort(

void *base,
size_t nel,
size_t width,
int (*compar)(const void *, const void *));"

> self
options: #(optMayGC)
nbCall: #(void qsort (

NBExternalAddress array,
ulong size,
1, "sizeof an element"
QSortCallback qsortCallback))

module: NativeBoost CLibrary

Code 12: Example of callout passing a callback

The last missing piece in this example is the callout
definition shown in Code 12. The NativeBoost callout
specifies the callback arguments by using QSortCall-
back.

Callback lifetime. Each time a new callback is in-
stantiated it reserves a small amount of external mem-
ory which is freed once the callback is no longer used.
This is done automatically using object finalization
hooks..

2.6 Overview of NativeBoost-FFI Internals
This section provides an overview of the internal ma-
chinery of NativeBoost-FFI though it is not mandatory
to know it in order to use it as demonstrated by previous
examples.

General Architecture. Figure 3 describes the gen-
eral architecture of NativeBoost. Most code resides
at language-side, nevertheless some generic extensions
(primitives) to the VM are necessary to activate na-
tive code. At language-side, callouts are declared with
NativeBoost-FFI which processes them and dynami-
cally generates x86 native code using the AsmJit library.
This native code is responsible of the marshalling and
calling the external function. NativeBoost then uses a
primitive to activate this native code.

Callout propagation. Figure 4 shows a comparison
of the resolution of a FFI call both in NativeBoost-
FFI and a plugin-based FFI. At step 1, a FFI call is
emitted. The NativeBoost-FFI call is mostly processed
at language-side and it is only during step 4 that a
primitive is called and the VM effectively does the
external call by executing the native code. On the
opposite, a plugin-based FFI call already crossed the
low-level frontier in step 2 resulting that part of the

NativeBoost FFINativeBoost FFILanguage-side

VM-side

NativeNative

SmalltalkSmalltalk

< >< >

NativeNative

SmalltalkSmalltalk

< >< >
enterenter

returnreturn

restartrestart

AsmJit AssemblerAsmJit Assembler

< >< >
JIT IntegrationJIT Integration
PrimitivePrimitive

Figure 3: NativeBoost main components that major
part of the code resides at language-side.

type conversion process (marshalling) is already done
in the VM code. In NativeBoost-FFI, doing most of
the FFI call processing at language-side makes easier
to keep control, redefine or adapt it if needed.

3. NativeBoost-FFI Evaluation
In this section we compare NativeBoost with other FFI
implementations.
Alien FFI: An FFI implementation for Squeak/Pharo

that focuses on the language-side. All marshalling
happens transparently at language-side.

C-FFI: A C based FFI implementation for
Squeak/Pharo that performs all marshalling
operations at VM-side.

LuaJIT: A fast Lua implementation that has a close
FFI integration with JIT interaction.

Choice of FFI Implementations. To evaluate
NativeBoost we explicitly target FFI implementations
running on the same platform, hence we can rule out ad-
ditional performance differences. Alien and C-FFI run
in the same Pharo image as NativeBoost allowing a
much closer comparison.

Alien FFI is implemented almost completely at
language-side, much like NativeBoost. However, as the
following benchmarks will stress, it also suffers from per-
formance loss.

On the other end there is C-FFI which is faster
than Alien but by far not as flexible. For instance only
primitive types are handled directly.

As the third implementation we chose Lua. Lua is
widely used as scripting language in game development.
Hence much care has been taken to closely integrate
Lua into C and C++ environments. LuaJIT integrates
an FFI library that generates the native code for mar-
shalling and directly inlines C functions callout in the
JIT-compiled code.

Evaluation Procedure. To compare the different
FFI approaches we measure 100 times the accumula-
tive time spent to perform 1′000′000 callouts of the
given function. From the 100 probes we show the av-
erage and the standard deviation for a 68% confidence

Prepare Call to
External Function

Prepare Call to
External Function

External
Function
External
FunctionType ConversionType Conversion Resolve External

Function
Resolve External

Function

NativeBoost-FFINativeBoost-FFI

Plugin-based FFIPlugin-based FFI PluginPlugin

Language-side LibraryLanguage-side Library

FFI CallFFI Call1.1. 2.2. 3.3. 4.4. 5.5.

Figure 4: Comparison of FFI calls propagation in NativeBoost-FFI and a typical VM plugin-based implementation.
NativeBoost resorts to VM-level only for the native-code activation, whereas typical implementations cross this
barrier much earlier.

interval in a gaussian distribution. To exclude the call-
ing and loop overhead we subtract from each evaluation
the time spent in the same setup, but without the FFI
call. The final deviation displayed is the arithmetic av-
erage of the measured deviation of the base and the
callout measurement.

The three Smalltalk FFI solutions (NativeBoost,
Alien, C-FFI) are evaluated on the very same Pharo
1.4 (version 14458) image on a Pharo VM (version of
May 5. 2013). For the Lua benchmarks we use Lua-
JIT 2.0.1. The benchmarks are performed under the
constant conditions on a MacBook Pro. Even though a
standalone machine could improve the performance we
are only interested in the relative performance of each
implementation.
Choice of Callouts. We chose a set of representative
C functions to stress different aspects of an FFI imple-
mentation. We start with simple functions that require
little marshalling efforts and thus mainly focus on the
activation performance and callout overhead. Later we
measure more complex C functions that return complex
types and thus stress the marshalling infrastructure.

3.1 Callout Overhead
The first set of FFI callouts show mainly the overhead
of the FFI infrastructure to perform the callout.

For the first FFI evaluation we measure the execution
time for a clock() callout. The C function takes no
argument and returns an integer thus guaranteeing a
minimal overhead for marshalling and performing the
callout.

Call Time Relative Time
NativeBoost 492.13 ± 0.73 ms 1.0×

Alien 606.6 ± 1.9 ms ≈ 1.2×
C-FFI 541.77 ± 0.88 ms ≈ 1.1×

LuaJIT 343.0 ± 1.2 ms ≈ 0.7×

Table 3: Speed comparison of an uint clock(void)
FFI call (see Code 1).

abs is a about the same complexity as the clock func-
tion, however accepting a single integer as argument.

Call Time Relative Time
NativeBoost 65.34 ± 0.23 ms 1.00×

Alien 175.77 ± 0.31 ms ≈ 2.69×
C-FFI 148.77 ± 0.21 ms ≈ 2.27×

LuaJIT9 2.035 ± 0.015 ms ≈ 0.03×

Table 4: Speed comparison of an int abs(int i) FFI
call (see Figure 2).

Evaluation. For measuring the calling overhead we
chose the abs FFI callout. This C function is completed
in a couple of instructions which in comparison to
the conversion and activation effort of the FFI callout
is negligible. In Table 4 we see that NativeBoost is
at least a factor two faster than the other Smalltalk
implementation. Yet LuaJIT outperform NativeBoost
by an impressive factor 30. LuaJIT has a really close
integration with the JIT and this is what makes the
impressive FFI callout results possible.

3.2 Marshalling Overhead for Primitive Types
The third example calls getenv(’PWD’) expecting a
string as result: the path of the current working di-
rectory. Both argument and result have to be con-
verted from high-level strings to C-level zero-terminated
strings.

Call Time Relative Time
NativeBoost 105.29 ± 0.24 ms 1.0×

Alien 1058.7 ± 2.0 ms ≈ 10.1×
C-FFI 282.94 ± 0.24 ms ≈ 2.7×

LuaJIT10 97.3 ± 5.1 ms ≈ 0.9×

Table 5: Speed comparison of an char * getenv(char
*name) FFI call (see Code 2).

As a last evaluation of simple C functions with Native-
Boost, we call printf with a string and two integers
as argument. The marshalling overhead is less than for
9 Downsampled from increased loop size by a factor 100 to guar-
antee accuracy.
10 Downsampled from increased loop size by a factor 10 to guar-
antee accuracy.

the previous getenv example. However, printf is a
more complex C function which requires more time to
complete: it has to parse the format string, format the
given arguments and pipe the results to standard out.
Hence the relative overhead of an FFI call is reduced.

Call Time Relative Time
NativeBoost 371.03 ± 0.51 ms 1×

Alien 1412.37 ± 0.79 ms ≈ 3.8×
C-FFI 605.02 ± 0.23 ms ≈ 1.6×

LuaJIT 202.4 ± 2.1 ms ≈ 0.6×

Table 6: Speed comparison of an int printf(char
*name, int num1, int num2) FFI call

Evaluation. Table 3 and Table 4 call C functions
that return integers for which the conversion overhead
is comparably low. However we see that Alien compares
worse in the case of more complex Strings. Table 5
and Table 6 show this behavior. For the getenv a
comparably long string is returned which causes a factor
10 conversion overhead for Alien.

3.3 Using Complex Structures
To evaluate the impact of marshalling complex types,
we measure the execution time for a callout to cairo_-
matrix_multiply. In all cases, the allocation time of
the structs is not included in the measurement nor their
field assignments. Table 7 shows the results.

Call Time Relative Time
NativeBoost 79.00 ± 0.27 ms 1.0×

Alien 753.82 ± 0.51 ms ≈ 9.5×
C-FFI 380.8 ± 2.7 ms ≈ 3.6×

LuaJIT 5.66 ± 0.15 ms ≈ 0.07×

Table 7: Speed comparison of an cairo_matrix_mul-
tiply FFI call (cf. Listing 9)

Evaluation. In Table 7 shows that NativeBoost out-
performs the two other Smalltalk implementations.

3.4 Callbacks
Table 8 shows a comparison of qsort callouts passing
callbacks. Callbacks are usually much more slower than
callouts.

Call Time Rel. Time
NativeBoost 2300.0 ± 1.1 ms 1.0×

Alien 600.83 ± 0.35 ms ≈ 0.26×
C-FFI NA NA

LuaJIT 46.13 ± 0.62 ms ≈ 0.02×
NativeBoost with
Native Callbacks 4.98 ± 0.21 ms ≈ 0.002×

Table 8: Speed comparison of a qsort FFI call (cf.
Listing 10)

Evaluation. The results show that NativeBoost call-
backs are currently slower than Alien’s ones. This is
because Alien relies on specific VM support for call-
backs making their activation faster (context creation
and stack pages integration). On the opposite, Native-
Boost currently uses small support from the VM side
and even do part of the work at image side. This qsort
demonstrates the worst case because it implies a lot
of activations of the callback. For each of these calls,
NativeBoost creates a context and make the VM switch
to it. To really demonstrate that these context switches
are the bottleneck, Table 8 also shows the result of do-
ing the same benchmark in NativeBoost but using a
native callback i.e. containing native code. We do not
argue here that callbacks should be implemented in na-
tive code but that NativeBoost support for callback can
be optimized to reach Alien’s performance at least.

4. NativeBoost-FFI Implementation
Details

The following subsections will first focus on the high-
level, language-side aspects of NativeBoost, such as
native code generation and marshalling. As a second
part we describe implementation details of the low-level
extensions, such as the NativeBoost primitives and the
JIT interaction.

4.1 Generating Native Code
In NativeBoost all code generation happens transpar-
ently at language-side. The various examples shown in
Section 2 show how an FFI callout is defined in a stan-
dard method. Upon first activation the NativeBoost
primitive will fail and by default continues to evalu-
ate the following method body. This is the point where
NativeBoost generates native code and attaches it to
the compiled method. NativeBoost then reflectively re-
sends the original message with the original arguments
(for instance abs: in the example Figure 2). On the
second activation, the native code is present and thus
the primitive will no fail but run the native code. Sec-
tion 4.2.1 will give more internal details about the code
activation and triggering of code generation.

4.1.1 Generating Assembler Instructions
Figure 3 shows that NativeBoost relies on AsmJit11,
a language-side assembler. AsmJit emerged from an
existing C++ implementation12 and currently supports
the x86 instruction set.

In fact it is even possible to inline custom assem-
bler instructions in Pharo when using NativeBoost. This
way it is possible to meet critical performance require-
ments. Typically Smalltalk does not excel at algorith-
mic code since such code does not benefit from dynamic
message sends.

4.1.2 Reflective Symbiosis
NativeBoost lives in symbiosis with the Pharo program-
ming environment. As shown in the examples in Sec-
tion 2 and in more detail in Figure 2 NativeBoost de-
tects which method arguments correspond to which ar-
gument in the FFI callout. To achieve this, NativeBoost
inspects the activation context when generating native
code. Through reflective access to the execution context
we can retrieve the method’s source code and thus the
argument names and positions.

4.1.3 Memory Management
NativeBoost supports external heap management with
explicit allocation and freeing of memory regions. There
are interfaces for allocate and free as well as for
memcopy:

memory := NativeBoost allocate: 4.
bytes := #[1 2 3 4].
"Fill the external memory"
NativeBoost memCopy: bytes to: memory size: 4.

"FFI call to fill the external object"
self fillExternalMemory: memory.

"Copy back bytes from the external object"
NativeBoost memCopy: memory to: bytes size: 4.
NativeBoost free: memory.

Code 13: Example of external heap management in
NativeBoost

Using the external heap management it is possible to
prepare binary blobs and structures for FFI calls.

In the previous example Code 13 the memory vari-
able holds a wrapper for the static address of the allo-
cated memory. Hence accessing it from low-level code
is straight forward. However in certain situations it is
required to access a high-level object from assembler.
Pharo has a moving garbage collector which means that
you can not refer directly to a high-level object by a
fixed address.
11 http://smalltalkhub.com/#!/~Pharo/AsmJit
12 https://code.google.com/p/asmjit/

Smalltalk
Bytecodes
Smalltalk
Bytecodes

NativeNative

SmalltalkSmalltalk

< >< >

NativeNative

SmalltalkSmalltalk

< >< >
enterenter

returnreturn

restartrestart

Native
Instructions

Native
Instructions

External
Roots

External
Roots

Object 1Object 1

Object 2Object 2

Object 4Object 4

Object 3Object 3
Compiled MethodCompiled Method

Trailer TypeTrailer Type
VMVM

PrimitivePrimitive< >< >

Figure 5: Pointers in a CompiledMethod to objects
registered as external roots are pinpointed at fixed offset
in global VM-level object.

To deal with this problem the VM has a special
array at a known address that contains pointers to high-
level objects. The garbage collector keeps this external
roots array up to date. Hence it is possible to statically
refer to a Pharo object using a double indirection over
the external roots. Figure 5 visualizes how native code
directly accesses Pharo objects through this indirection.

4.2 Activating Native Code
In this section we present the VM-level interaction
of NativeBoost. Even though NativeBoost handles
most tasks directly at language-side it requires certain
changes on VM level:
• executable memory,
• activation primitives for native code.

Since NativeBoost manages native code at language-
side there is no special structure or memory region
where native code is stored. Native instructions are
appended to compiled methods which reside on the
heap. Hence the heap has to be executable in order to
jump to the native instructions.

4.2.1 The NativeBoost activation Primitive
In Section 4.1 we explained how NativeBoost creates
FFI callouts at language-side. However, so far we left
out the part on how the generated native code is acti-
vated.

The examples in Section 2, especially Figure 2 show
that each NativeBoost FFI callout requires a special
primitive. Figure 6 shows how a NativeBoost method is
activated.

• In the first step (cf. ¶) the NativeBoost callout
primitive is activated. The primitive checks if the
compiled method actually contains native code.

• On the first activation there is no native code
available yet. Hence the primitive will fail and the
Smalltalk body (cf. ·) of the NativeBoost method

55

22

NativeNative

SmalltalkSmalltalk

< >< > < >< >
enterenter

returnreturn

restartrestart
11 33 44

Figure 6: Native code activation. The first call triggers
the code generation. Then the method is restarted and
the native code executed.

gets evaluated. This is where NativeBoost prepares
the native code for the FFI callout.

• After installing the native code in the method trailer,
the NativeBoost method is reactivated with the orig-
inal arguments (cf. ¸).

• Again we end up in the NativeBoost activation prim-
itive (cf. ¹). However, this time there is native code
(cf. º) available and thus the primitive jumps to the
native code instead.

5. Related Work
Typical Smalltalk system are isolated from the low-level
world and provide only limited interoperability with C
libraries. However there are notable exceptions: Étoilé
and Smalltalk/X.

Chisnall presents the Pragmatic Smalltalk Compiler
[3], part of the Étoilé project, which focuses on close
interaction with the C world. The main goal of this
work is to reuse existing libraries and thus reduce dupli-
cated effort. The author highlights the expressiveness of
Smalltalk to support this goal. In this Smalltalk imple-
mentation multiple languages can be mixed efficiently.
It is possible to mix Objective-C, Smalltalk code. All
these operations can be performed dynamically at run-
time. Unlike our approach, Étoilé aims at a complete
new style of runtime environment without a VM. Com-
pared to that, NativeBoost is a very lightweight solu-
tion.

Other dynamic high-level languages such as Lua
leverage FFI performance by using a close interaction
with the JIT. LuaJIT [1] for instance is an efficient
Lua implementation that inlines FFI calls directly into
the JIT compiled code. Similar to NativeBoost this al-
lows one to minimize the constant overhead by gener-
ating custom-made native code. The LuaJIT runtime is
mainly written in C which has clearly different seman-
tics than Lua itself.

On a more abstract level, high-level low-level pro-
gramming [4] encourage to use high-level languages for
system programming. Frampton et al. present a low-
level framework which is used as system interface for
Jikes, an experimental Java VM. However their ap-

proach focuses on a static solution. Methods have to
be annotated to use low-level functionality. Addition-
ally the strong separation between low-level code and
runtime does not allow for reflective extensions of the
runtime. Finally, they do not support the execution and
not even generation of custom assembly code on the fly.

QUICKTALK [2] follows a similar approach as
NativeBoost. However Ballard et al. focus mostly on
the development of a complex compiler for a new Small-
talk dialect. Using type annotations QUICKTALK al-
lows for statically typing methods. By inlining meth-
ods and eliminating the bytecode dispatch overhead by
generating native code QUICKTALK outperforms in-
terpreted bytecode methods. Compared to Waterfall,
QUICKTALK does not allow to leave the language-side
environment and interact closely with the VM.

Kell and Irwin [5] take a different look at interacting
with external libraries. They advocate a Python VM
that allows for dynamically shared objects with exter-
nal libraries. It uses the low-level DWARF debugging
information present in the external libraries to gather
enough metadata to automatically generate FFIs.

6. Future Work
Even though NativeBoost shows good overall perfor-
mance when it comes to callbacks it does not keep up
with other Smalltalk-based solutions. In the current de-
velopment phase not much attention was payed to call-
back performance as it is not a common use case for
FFI callouts. Fast callbacks require close interaction
and specific modifications at VM-level. However, ini-
tially NativeBoost kept the modifications to the VM at
a minimum. We assume that we can reach the same
performance as Alien relying on the same low-level im-
plementation.

As a second issue we would like to address the callout
overhead by using an already existing JIT integration of
NativeBoost. Currently the VM has to leave from JIT-
mode to standard interpretation mode when it activates
an NativeBoost method. This context switch introduces
an unnecessary overhead for an FFI callout. A current
prototype directly inlines the native code of a Native-
Boost method in the JIT. Hence the cost for the context
switch plus the cost of activating the NativeBoost call-
out primitive can be avoided.

7. Conclusion
In this paper we presented NativeBoost a novel ap-
proach to foreign function interfaces. Our approach re-
lies only on a very generic extension of the VM to allow
for language-side code to directly call native instruc-
tions.

Using a in depth evaluation of NativeBoost compar-
ing against two other Smalltalk FFI implementations

and LuaJIT we showed in Section 3 that our language-
side approach is competitive. NativeBoost reduces the
callout overhead by more than a factor two compared
to the two closest Smalltalk solutions.

Compared to LuaJIT there is still space for improve-
ments. We measured a factor 30 lower calling overhead
due to a close JIT integration. However for typical FFI
calls the absolute time difference between NativeBoost
and Lua is roughly 30%. With a partial solution ready
to integrate NativeBoost closer with the JIT we expect
to come close to Lua’s performance.

Furthermore we showed that NativeBoost essen-
tially combines VM-level performance with language-
side flexibility when it comes to marshal complex types.
New structures are defined practically at language-side
and conversion optimizations are added transparently.

Acknowledgments
This work was supported by Ministry of Higher Ed-
ucation and Research, Nord-Pas de Calais Regional
Council, FEDER through the ’Contrat de Projets Etat
Region (CPER) 2007-2013’, the Cutter ANR project,

ANR-10-BLAN-0219 and the MEALS Marie Curie Ac-
tions program FP7-PEOPLE-2011-IRSES.

References
[1] LuaJIT FFI Library. http://luajit.org/ext_ffi.

html.
[2] M. B. Ballard, D. Maier, and A. W. Brock. QUICK-

TALK: a smalltalk-80 dialect for defining primitive meth-
ods. SIGPLAN Not., 21(11):140–150, June 1986.

[3] D. Chisnall. Smalltalk in a C world. In Proceedings of
the International Workshop on Smalltalk Technologies,
IWST ’12, New York, NY, USA, 2012. ACM.

[4] D. Frampton, S. M. Blackburn, P. Cheng, R. J. Garner,
D. Grove, Eliot, and S. I. Salishev. Demystifying magic:
high-level low-level programming. In Proceedings of the
2009 ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments, VEE ’09, pages 81–
90, New York, NY, USA, 2009. ACM.

[5] S. Kell and C. Irwin. Virtual machines should be invis-
ible. In VMIL ’11: Proceedings of the 5th workshop on
Virtual machines and intermediate languages for emerg-
ing modularization mechanisms, page 6. ACM, 2011.

IWST 2013 Selected papers

64

Pragmatic Visualizations for Roassal: a Florilegium

Mathieu Dehouck1 Usman Bhatti1 Alexandre Bergel2

Stéphane Ducasse1

1RMoD, INRIA Lille Nord Europe, France
2Department of Computer Science (DCC), University of Chile, Santiago, Chile

3Synectique, Lille, France

ABSTRACT
Software analysis and in particular reverse engineering often in-
volves a large amount of structured data. This data should be pre-
sented in a meaningful form so that it can be used to improve soft-
ware artefacts. The software analysis community has produced nu-
merous visual tools to help understand different software elements.
However, most of the visualization techniques, when applied to
software elements, produce results that are difficult to interpret and
comprehend.

This paper presents five graph layouts that are both expressive for
polymetric views and agnostic to the visualization engine. These
layouts favor spatial space reduction while emphasizing on clarity.
Our layouts have been implemented in the Roassal visualization
engine and are available under the MIT License.

1. INTRODUCTION
Software analysis and reverse engineering large software sys-

tems are known to be difficult [DDN02]. Visualizing software
eases analysis by using cognitive abilities to understand software
and identify anomalies [Die07]. Visualizing software elements as
a graph is a natural visual representation commonly employed:

• Graphs are relatively cheap and easy to visualize due to the
amount of available dedicated libraries (e.g., D31, Raphael2).

• Graphs are a structure effective to represent many different
aspects of a software, including control flow and dependen-
cies between structural elements.

Visualization techniques are known to be effective at analyzing
package dependencies, correlating metric values, package connec-
tivity and cycles, package evolution or the common usage of pack-
age classes (e.g., [DLP05, LDDB09, vLKS+11]). A large body of
existing work on software understanding is based on visualization

1http://d3js.org
2http://raphaeljs.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

approaches [HMM00, SvG05], in particular, on node-link visual-
izations [SM95, CIK03, KD03, HSSW06]. On one hand, some re-
searchers explored matrix-based representation of graphs [HFM07,
AvH04] or of software [MFM03] and its evolution [VTvW05]. On
another hand, important progress has been made to support navi-
gation over large graphs and to propose scalable and sophisticated
node-link visualizations for visualizing the connectivity graph of
software entities [GFC05, HSSW06, Hol09].

Roassal3 [BCDL13] is a visualization engine for the Pharo lan-
guage4 [BDN+09]. The question here was not to invent a new way
of representing information, but to find relevant existing layouts
and to implement them in Roassal, alongside Roassal layout such
as grid, circle, tree. The novelty of our approach is that even when
the nodes do not have same size they are drawn correctly.

We have thus proposed five new graph layouts, each one focus-
ing on a particular aspect: the radial-tree focuses on representing
hierarchies, while with regular trees the root is repulsed to the top,
radial-tree keeps the root at the center of the visualization. Force-
based layout allows one to represent cyclic graphs such as depen-
dency graphs. The compact tree family is just another implementa-
tion of trees using the same algorithm as radial-tree so that it saves
space for large hierarchies. The reversed radial tree layout is an-
other way of representing hierarchies where the position of an el-
ement does not depend on its depth but on its distance from the
bottom of the graph. The rectangle-packing layout is an imple-
mentation of a rectangle packing algorithm to allow representing a
lot of elements of different sizes in a reasonably restricted space.

To avoid confusion, we define terms used in this paper. A layout
is an algorithm that determinate position of the graphical elements
contained in a visualization following some particular constraints.
A node or vertex is a basic element of a graph, typically in software
analysis a package, a class or a method. An edge or a link repre-
sents a relation between two nodes, typically inheritance, compo-
sition or call. A tree is an acyclic directed graph, for example a
simple object hierarchy. A root node is an entry point from which
all the nodes are reachable by transitivity, typically the superclass
of a class hierarchy.

In Section 2 we will introduce the problem and then in Section 3
describe the different layouts we have implemented, explaining for
each the intention we had, the problems we encountered, the way
we solved them and the limits of our solution.

3http://objectprofile.com/#/pages/products/roassal/overview.html
4http://www.pharo-project.org

2. PROBLEM DESCRIPTION
In reverse engineering we deal with old and complex systems

that are not understood easily. Moose provides powerful tools to
analyse these pieces of software and we end up with a large amount
of data and metrics. But it is hardly more understandable, thus we
need a way of having a quick and smart overview of the relevant
information.

The solution is to map the most important textual information
to graphical features, and to organize them to be easily readable.
The aim of the layouts is to organize this visual information. We
may have to represent various kinds of data and we may want to
focus on different features, it is therefore necessary to have several
layouts which will organize data.

The main constraint is computing duration, hence the choice of
a pragmatic answer. For example, we give to the rectangle packing
layout a desired size for the resulting rectangle and do not really
compute the optimal arrangement which would have minimized the
surface because it is time consuming.

3. A FLORILEGIUM OF VISUALIZATIONS
In this section we present some algorithms we added to Roassal.

In particular we present the general intention of the algorithm, the
main challenges it poses and the solutions we chose.

For each algorithm proposed here, we show the resultant layout
with the Collection class hierarchy of Pharo: there are 131 classes
in this hierarchy.

3.1 Radial Tree

Intention.
When dealing with inheritance it is natural to have large trees,

and the problem with regular tree representation is that the root
is repulsed to the top of the visualisation. Sometimes we want to
avoid that, and to keep the root amidst the visualisation. This is the
aim of the radial tree.

Difficulties.
There are several difficulties when drawing a radial tree.

• Parent position node. Firstly we had to choose if the po-
sition of a parent node would influence its children nodes
position, or if the parent node position would be influenced
by its children nodes position.

• Supporting interaction. Another constraint was that in Roas-
sal we do not just want to represent data, but we also want
to interact with them, so it was important to have an airy
representation. This was the problem encountered with the
old implementation, the representation was so compact that
it was not possible to interact properly with the nodes.

• Algorithm selection. The last problem and maybe the most
important one, is what kind of algorithm should we use to
compute nodes position. If we choose to compute directly
radial position for each node, as a circle has a finite perimeter
then we take the risk of having to displace each node several
times, that gives a complexity in O(n²), and we can do better
for such layout.

Solutions.
We propose a solution inspired by the modified version of Reingold-

Tilford algorithm [BJL02]. We compute node position beginning at

the leaves and then we ascend the tree to the root, displacing sub-
trees when they overlap. We do this in a Cartesian coordinate sys-
tem, with some minor modifications to nodes position so that the
radial tree looks nice at the end: typically the space between nodes
depends on the layer they belong to. And then we transform our
regular tree into a radial one wrapping the layers around the root
(Figure 1).

Figure 1: Radial-Tree Layout

Limits.
This layout is interesting for visualizing hierarchies, since we

want to interact with the nodes, there must be enough space be-
tween them, and so when there are many nodes on a layer, then the
tree has an enormous diameter and the root remains all alone in the
middle of the visualization, far from its children. This is the main
drawback of the radial-tree layout.

3.2 Force Based

Intention.
When dealing with methods invocations or module dependen-

cies, trees are seldom encountered due to cyclic connections. And
sometimes it does not make sense to give more importance to a
node in particular, so a tree layout is not always appropriate. The
force based layout considers nodes as repulsive charges and links
as springs, then we have a representation which respect nodes con-
nectivity.

Difficulties.
The main problem of force-based layout algorithms is their tem-

poral complexity which is considered to be O(n3) for the most triv-
ial implementations, as each iteration has a quadratic complexity
(we compute force action for each pair of nodes) and we must it-
erate enough times (which is thought to be of the same order as
the number of nodes) to reach a local minimum. And since the
goal is to represent big graphs, it is necessary to have a less time
consuming algorithm.

Solutions.
Our solution is inspired by D3 Javascript library implementation

and the FADE algorithm [QE01]. Quadtrees reduce the number of

calculi at each step and thus give a O(n log(n)) complexity. It is also
possible to specify charge for a particular node, strength of a link,
gravity center. Our force based layout is highly parametrisable,
so that it is possible to focus on different aspects of a system (see
Figure 2).

Figure 2: Force-Based Layout

Limits.
Here the limit is the running time. Even with a complexity in

O(n log(n)), large graphs takes much longer, and then it may be
difficult to use it in live.

3.3 Compact Tree

Intention.
There were already tree layouts in Roassal, but they make large

graphs since they only keep track of the biggest abscissa where a
node has been set. Thus our goal here was to have a less space con-
suming algorithm, which permits us to draw condensed tree when
there is not much space.

Difficulties.

• Vacant position. A trap in this kind of algorithm is that we
need to know for each layer the abscissa where we can set
nodes, this can be done multiple ways, but the trivial way
consists of checking all the previously set nodes, and then
you have a complexity in O(n2), which is a loss of time in
this case since trees can be drawn with a smaller complexity.

• Node shifting. Then as this algorithm is recursive, when
setting a child node we do not know where the parent node
will be set, and then when setting the parent node, sometimes
it occurs that we have to move children nodes, and here the
trivial solution has also a complexity in O(n2).

Solutions.
Here we also use a Reingold-Tilford like algorithm with some

improvements such as pointers for left-most and right-most chil-
dren of a node. This is done so that we do not look at all the pre-
viously set nodes when we need to know where we can put a node.

When placing a new node, we just skim the contour of the graph
(the right-most and the left-most nodes of each layer) and it is less
time consuming. In the same way, when we have to move children
nodes to correspond to their parent node position, instead of mov-
ing them each time, the parent keeps a "modification" value, that
spreads to the children when they are drawn, once again it saves
time (see Figure 3).

Figure 3: Vertical Compact Tree Layout

Limits.
Our solution is pragmatic thereby computed tree is not the nar-

rowest since even when children order is not important the tree is
drawn as if the children were ordered. But then it would be neces-
sary to go through the hierarchy several times to sort the nodes in
order to have the narrowest tree, and it would have a high complex-
ity.

3.4 Reversed Radial Tree

Intention.
The reversed radial tree layout is another tree layout for hierar-

chy representation, but when most of the trees focus on the distance
between the nodes and the root, the reversed radial tree layout fo-
cuses on the position of nodes compared to the whole tree, thus
leaves are on the border regardless of their distance from the root.

Difficulties.
There are no real difficulties for the reversed radial tree layout.

It is just important to avoid useless route in the graph.

Solutions.
We skim the tree from the leaves to the root, recording for each

node the maximum distance to the leaves in the subtree induced by
the node. And then as we have the list of leaves, we compute nodes
position from the leaves to the root (see Figure 4).

Limits.
Here we have the same kind of problems as with the radial tree.

As leaves are all on the border of the visualization, with many
leaves, the diameter of the visualization may be large and the vi-
sualization may be almost empty, we will have lots of nodes on
the border (the leaves) and very few nodes in the circle, with long
edges between them.

3.5 Rectangle Packing

Intention.
Sometimes we want to represent a lot of elements of different

Figure 4: Reversed radial tree Layout

sizes and a grid layout is not always a good choice as it does not
use the visual space efficiently. The goal of the rectangle packing
layout is to show many elements of various sizes in the available
restricted visual space.

Difficulties.
The problem of rectangle packing is NP-hard, that means that

we cannot find a solution in polynomial time but we cannot afford
excessive computation time.

Solutions.
Here our solution is very pragmatic: instead of looking for the ar-

rangement that will minimize the surface occupied by the elements,
we provide the layout a ratio (2/3 by default), which corresponds to
the width divided by the height of the rectangle we want to fill with
our elements (Figure 5). Then the layout starts placing the elements
and resizes the containing rectangle until it has succeed in placing
every element.

Limits.
There are two limits:

• Running time. Even without looking for the best arrange-
ment, it is time consuming. Thus it is difficult to apply it on
a large number of elements.

• Biggest elements. We are dependent of the biggest elements
(typically the longest and the widest). Sometimes we have
little elements and a few big ones, then if we ask for a shape
oriented in the other direction as the big ones, we will not
have it. In our example, we provided the ratio 1/1 since we
wanted to arrange elements in a square, but as there is a very
long and thin one, we do not have a square at all, but a thin
rectangle.

Here we may raise the question of node resizing which is a
touchy one, since we may break the sense originally provided
by node size. And then, how do we resize nodes? Do we
resize all the nodes, or only the biggest ones?

4. CONCLUSION
For large amounts of data, Roassal and similar visualization en-

gines need to find a pertinent representation so that data are pre-
sented in a meaningful form and understood by the end users. In
this paper, we have presented five graph layouts that are both ex-
pressive for polymetric views and agnostic to the visualization en-
gine. The layouts favor spatial space reduction while emphasizing

Figure 5: Rectangle Packing Layout

on clarity. Our solution is tractable and diverse, as the variety of
layouts allows to analyze data in various forms. It should be noted
that even with good layouts, if the amount of information is too big
then it is hardly understandable, and the user has to himself select
the most relevant information to be shown. We can make our lay-
outs even more customisable, by for example proposing nodes stag-
gering which can sometimes be a good way of saving even more
space.

Acknowledgements.
This work was supported by Ministry of Higher Education and

Research, Nord-Pas de Calais Regional Council, FEDER through
the ’Contrat de Projets Etat Region (CPER) 2007-2013’, the Cutter
ANR project, ANR-10-BLAN-0219 and the MEALS Marie Curie
Actions program FP7-PEOPLE-2011- IRSES MEALS.

This work has been partially funded by Program U-INICIA 11/06
VID 2011, grant U -INICIA 11/06, University of Chile, and FONDE-
CYT project 1120094. We thank the support from the Plomo IN-
RIA associated Team.

5. REFERENCES
[AvH04] James Abello and Frank van Ham. Matrix zoom: A

visual interface to semi-external graphs. In 10th
IEEE Symposium on Information Visualization
(InfoVis 2004), 10-12 October 2004, Austin, TX,
USA, pages 183–190. IEEE Computer Society, 2004.

[BCDL13] Alexandre Bergel, Damien Cassou, Stéphane
Ducasse, and Jannik Laval. Deep Into Pharo. Square
Bracket Associates, 2013.

[BDN+09] Andrew P. Black, Stéphane Ducasse, Oscar
Nierstrasz, Damien Pollet, Damien Cassou, and
Marcus Denker. Pharo by Example. Square Bracket
Associates, Kehrsatz, Switzerland, 2009.

[BJL02] Christoph Buchheim, Michael Jünger, and Sebastian
Leipert. Improving walker’s algorithm to run in linear
time. In Revised Papers from the 10th International
Symposium on Graph Drawing, GD ’02, pages
344–353, London, UK, UK, 2002. Springer-Verlag.

[CIK03] Neville Churcher, Warwick Irwin, and Ron Kriz.
Visualising class cohesion with virtual worlds. In
APVis ’03: Proceedings of the Asia-Pacific
symposium on Information visualisation, pages
89–97, Darlinghurst, Australia, Australia, 2003.
Australian Computer Society, Inc.

[DDN02] Serge Demeyer, Stéphane Ducasse, and Oscar
Nierstrasz. Object-Oriented Reengineering Patterns.
Morgan Kaufmann, 2002.

[Die07] Stephan Diehl. Software Visualization.
Springer-Verlag, Berlin Heidelberg, 2007.

[DLP05] Stéphane Ducasse, Michele Lanza, and Laura
Ponisio. Butterflies: A visual approach to
characterize packages. In Proceedings of the 11th
IEEE International Software Metrics Symposium
(METRICS’05), pages 70–77. IEEE Computer
Society, 2005.

[GFC05] Mohammad Ghoniem, Jean-Daniel Fekete, and
Philippe Castagliola. On the readability of graphs
using node-link and matrix-based representations: a
controlled experiment and statistical analysis.
Information Visualization, 4(2):114–135, 2005.

[HFM07] Nathalie Henry, Jean-Daniel Fekete, and Michael J.
McGuffin. Nodetrix: a hybrid visualization of social
networks. IEEE Trans. Vis. Comput. Graph.,
13(6):1302–1309, 2007.

[HMM00] Ivan Herman, Guy Melançon, and M. Scott Marshall.
Graph visualization and navigation in information
visualization: A survey. IEEE Transactions on
Visualization and Computer Graphics, 6(1):24–43,
2000.

[Hol09] Danny Holten. Visualization of Graphs and Trees for
Software Analysis. PhD thesis, Computer science
department, 2009. ISBN 978-90-386-1882-1.

[HSSW06] Holt, Schürr, Sim, and Winter. Gxl: A graph-based
standard exchange format for reengineering. Science
of Computer Programming, 60(2):149–170, April
2006.

[KD03] Said Karouach and Bernard Dousset. Visualisation de
relations par des graphes interactifs de grande taille.
Journal of ISDM (Information Sciences for Decision
Making), 6(57):12, March 2003.

[LDDB09] Jannik Laval, Simon Denier, Stéphane Ducasse, and
Alexandre Bergel. Identifying cycle causes with

enriched dependency structural matrix. In WCRE
’09: Proceedings of the 2009 16th Working
Conference on Reverse Engineering, Lille, France,
2009.

[MFM03] Andrian Marcus, Louis Feng, and Jonathan I.
Maletic. 3D representations for software
visualization. In Proceedings of the ACM Symposium
on Software Visualization, pages 27–ff. IEEE, 2003.

[QE01] Aaron Quigley and Peter Eades. Fade: Graph
drawing, clustering, and visual abstraction. In
Proceedings of the 8th International Symposium on
Graph Drawing, GD ’00, pages 197–210, London,
UK, 2001. Springer-Verlag.

[SM95] Margaret-Anne D. Storey and Hausi A. Müller.
Manipulating and documenting software structures
using SHriMP Views. In Proceedings of ICSM ’95
(International Conference on Software Maintenance),
pages 275–284. IEEE Computer Society Press, 1995.

[SvG05] Margaret-Anne D. Storey, Davor Čubranić, and
Daniel M. German. On the use of visualization to
support awareness of human activities in software
development: a survey and a framework. In
SoftVis’05: Proceedings of the 2005 ACM symposium
on software visualization, pages 193–202. ACM
Press, 2005.

[vLKS+11] Tatiana von Landesberger, Arjan Kuijper, Tobias
Schreck, Jörn Kohlhammer, Jarke J. van Wijk,
Jean-Daniel Fekete, and Dieter W. Fellner. Visual
analysis of large graphs: State-of-the-art and future
research challenges. Comput. Graph. Forum,
30(6):1719–1749, 2011.

[VTvW05] Lucian Voinea, Alex Telea, and Jarke J. van Wijk.
Cvsscan: visualization of code evolution. In SoftVis
’05: Proceedings of the 2005 ACM symposium on
Software visualization, pages 47–56, New York, NY,
USA, 2005. ACM.

IWST 2013 Selected papers

70

IWST 2013 Selected papers

Part II

Short papers
The goal of the workshop is to create a forum around advances or experience in Smalltalk and to trigger
discussions and exchanges of ideas. Participants are invited to submit research articles.
Short papers are position papers describing emerging ideas or ongoing works at an early stage.

71

IWST 2013 Selected papers

72

Identifying Equivalent Objects to Reduce Memory
Consumption

Alejandro Infante, Juan Pablo Sandoval, Alexandre Bergel

Department of Computer Science (DCC)
University of Chile, Santiago, Chile

ABSTRACT
Executing an application may trigger the creation of a large
amount of objects. For many applications, a large portion of
these objects are unnecessary and their creation could simply
be avoided.

We describe a lightweight profiling technique to identity
“equivalent” objects. Such equivalent objects are simply
redundant and may be shared or reused to reduce the memory
footprint. We propose object-centric execution blueprint,
a visual representation to help practitioners identify cases
where objects may be reused instead of being redundant.

1. INTRODUCTION
Garbage collection alleviates the programming activity by

delegating the burden of memory deallocation to the vir-
tual machine. The advances of memory models and garbage
collectors have significantly reduced the cost of managing
memory. Benefits of garbage collection are tremendous: soft-
ware programs are easier to write and are likely to have less
memory-related problems than when written in plain C or
C++. However, an excessive use of garbage collection may
have a significant impact on the application performance.
Creating, initializing and destroying an object consume exe-
cution time and memory space.

Current object-oriented programming languages “make it
too easy” to create objects. Consider the following code
example, inspired by one of our case studies:

”Version 1 of Builder”

Builder>>createNode
ˆ GraphicalElement new color: self defaultColor.

Builder>>defaultColor
”Gray color”
ˆ Color r: 0.5 g: 0.5 b: 0.5

Pharo is an object-oriented language and environment for
the classic Smalltalk-80 programming language 1.

1http://pharobyexample.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

The class Builder creates a new colored graphical ele-
ment when receiving the message createNode. The method
defaultColor creates an instance of the class Color. In
Pharo, the class Color is defined as immutable: Color does
not provide mutators for its instance variables and any at-
tempt to modify it raises an error. Once instantiated, the
value of a color cannot be modified.

The version of the class Builder given above is clearly
suboptimal since a new color object is associated to each
element and all these color objects are equals. In Pharo, a
color object weighs 36 bytes.

We found that each ∼18,000 color object creation initiates
a garbage collection, thus incurring the inconvenience of
garbage collecting the memory (e.g., pause in the program
execution, lack of reactiveness in case of CPU intensive
activity).

A possible improvement of the Builder class may be (dif-
ference is indicated in bold):

”Version 2 of Builder”

Builder>>createNode
ˆ GraphicalElement new color: self defaultColor.

Builder>>defaultColor
”Gray color”
defaultColor ifNil: [defaultColor := Color r: 0.5 g:

0.5 b: 0.5].
ˆ defaultColor

In this Version 2, Builder is augmented with a new in-
stance variable called defaultColor. This variable acts as a
memorization cache to keep a unique reference of the default
color.

Identifying the necessary changes to move from Version
1 to Version 2 of Builder does not present any significant
challenge on this contrived example. However, typical object-
oriented programs create and destroy a large number of ob-
jects. Identifying the objects that are unnecessarily created
or destroyed too early presents some challenges[?]. Identify-
ing places of redundant object creations is not trivial in many
cases. It often requires a deep knowledge of the program
intent and implementation. Unfortunately, traditional mem-
ory profiling tools do not give any indication about whether
objects are redundant or not. As discussed in the related
work section, traditional memory analyzers are limited to
providing metrics about the heap consumption.

This paper is about a profiling technique to help software
engineers identify situations for which reusing or sharing an
object is beneficial.

This paper presents a lightweight profiling technique that

1

identifies equivalent objects, intended to be shared to reduce
the memory footprint. Our profiler identifies for a given
program execution objects that are both non-mutable and
are structurally equals. Equality is verified by comparing
object snapshots, a kind of hash value that does not rely on
the object identity.

Our profiler is accompanied with Object-Centric Execution
Blueprint, a visual representation of the memory consumption
to help practitioners identify sets of equivalent immutable
objects that may safely be replaced by one representative
shared object. We have successfully used the blueprint to
detect and remove a number of redundant objects in a Pharo
real world application.

The paper is structured as follows. Section 2 presents
our memory profiling in a nutshell. Section 3 describes a
case study we have carried out on the Roassal application.
Section 4 presents the visual support given to the practitioner
to identify critical situations. Section 5 briefly describes the
implementation of our profiler. Section 6 gives an overview
of the related work. Section 7 concludes and presents future
work.

2. IDENTIFYING EQUIVALENT OBJECTS
We propose to optimize applications by identifying groups

of equivalent objects. Once identified, a group of equiv-
alent objects may be merged into a unique sharable and
reusable object. A definition of object equivalence is pro-
vided (Section 2.1) and how such equivalence is measured
in an application in the Pharo programming language (Sec-
tion 2.2).

2.1 Object equivalence
Two objects o1 and o2 are said to be equivalent if all objects

pointing to o1 may instead point to o2 without affecting the
program semantics and execution. We say that o1 and o2

are equivalent if:

(a) o1 and o2 are instances of the same class – This
requirement implies that two objects being from differ-
ent classes are not interchangeable. This requirement
is not strictly necessary, meaning that two objects may
be inter-changeable even if they have different classes
as long as their interface and contract is similar. How-
ever, this requirement significantly simplifies our profiling
technique.

(b) both o1 and o2 have identical state – This require-
ment implies that each pair of corresponding field values
in both objects are either a pair of identical values or a
pair of references to objects which are themselves equiv-
alents. For instance, if o1 := Point x:5 y:4 and o2 :=
Point x:5 y:4 then o1 and o2 have identical state, be-
cause their field values in both objects are identical.

(c) both o1 and o2 do not mutate once their construc-
tion has completed – i.e., after the control flow has
left the initialize method. This implies that side ef-
fects are permitted up to the point the object is initialized.
If an object changes its state after its creation, such ob-
ject cannot be equivalent to any other object. In practice,
an object is initialized within a factory method located
on the metaclass. Examples of such factory methods
are new and new:. Sending the message new returns an
object supposedly initialized (the method new invokes

initialize). We designate a factory method as a class
method returning an instance of the class.

(d) neither o1 nor o2 receive the identityHash and ==

message – It forbids any attempt to access the identity
of an object. Receiving a message identityHash or ==

makes the object receiver not equivalent to any other
object. In Pharo, the identity hash value is a value that
reflects an internal number in the virtual machine. The
reference equality compares two memory locations.

(e) Neither the creation of o1 nor o2 perform any
side effect on the executing context – It implies
that during the creation of an object, side effects are
allowed only on the object under creation. Any side effect
on another object carried out before exiting a factory
method makes the object not equivalent to any other
object. Our motivation behind this requirement is that
if creating an object performs a side effect, then this
creation cannot be avoided else the application behavior
is not preserving, even if the object is redundant.

The proposed definition of object equivalence is conserva-
tive, meaning that (i) if two objects are equivalent, then one
of them is redundant and (ii) two redundant objects are not
necessarily equivalent.

This definition is similar to the definition of “mergeabil-
ity” given by Marinov and O’Callahan [2]. Section 6 detail
difference and motivate the need for another definition.

2.2 Profiling
We have built a profiler that identifies groups of equivalent

objects. During an execution, our profiler stores in a global
table recorded information for each object created in the
profiled application. The profiler knows for each object its
bit of “history” to determine after the program execution
whether that object is equivalent to other objects.

More specifically, our profiler records for each object (i)
the number of times it has mutated after having left a fac-
tory method and (ii) whether it has received the message
identifyHash.

In Pharo, everything is an object, and everything happens
by sending messages. Nevertheless, certain messages are byte
coded by the compiler and no lookup is performed. This is
the case of the == method. Because of this, detecting when
an object receives the message == is difficult and, in fact, it
is unsolved issue.

After a profiling, it compares all objects and categorizes
them in:

• groups of equivalent objects – All objects in these groups
have the same final state and they did not mutated
during the execution after their creation, it means that
they had the same state during the execution.

• groups of near-to-be equivalent objects – All objects
in these groups partially meet our object equivalent
definition. We consider that two object are near-to-be
equivalent if they do not meet some requirements, for
instance, without meeting requirement (c) and (d).

3. CASE STUDY
We have carried out an analysis of the Roassal application

and identified a number of situations in which objects have
been unnecessarily created.

2

Roassal. We have analyzed Roassal, an agile visualization
engine2. Roassal allows one to build sophisticated visual-
izations, pluggable for any arbitrary domain model. Many
objects are involved in a typical Roassal visualization. Each
visual element comes with a web of interconnected objects
to offer support for interaction and representation.

Excessive use of memory is a barrier from making Roassal
scalable: visualizations get slower and less responsive. In
addition, by being realized within the virtual machine, the
garbage collection overhead does not explicitly appear in a
profiling report.

Equivalent objects. Roassal comes with a large amount
of tests. The test coverage of Roassal is about 80%, giving
us confidence that a fair portion of Roassal features are
exercised by unit tests. We have profiled the execution of
Roassal unit tests and extracted the following information.

Running Roassal unit tests produces 112,513 objects, in-
stances of Roassal classes. Our profiler has identified that
10.97% of these objects are redundant with the remaining
89.03% of the objects. These 10.97% represents the portion
of objects that are unnecessary, and thus the possible gain
of the reduction of the object construction.

The largest group of equivalent of objects we have identified
is made of instances of the class RONullShape. Running the
tests of Roassal instantiates this class 13,343 times for which
11,777 objects are equivalent between them. This result
means that 11,776 objects are simply unnecessary.

The second largest group is made of all instances of the
class RODraggable. The 3,027 instances of this class are all
equivalent, indicating the need of a singleton pattern.

Improvement of Roassal. We went through some of the
group of equivalent objects mentioned in the previous section
and refactored Roassal accordingly. We have reduced the
amount of created objects by 5.1%. The total amount of
objects went from 112,513 to 106,806. This 5.1% of reduc-
tion represents a gain of 45Kb approximately, leading to a
reduction of 1.4% of the memory consumption.

We have refactored Roassal by implementing singleton
patterns on various classes. The class RODraggable has been
refactored as follows:

RODraggable class>>elementToBeAdded
instance ifNil: [instance := self new].
ˆ instance

The singleton pattern is implemented in bold.

4. VISUAL SUPPORT
Object-centric execution blueprint is a visual aid to identify

groups of equivalent (and therefore redundant) objects. We
use a polymetric view [1] for that purpose, since we relate
different metrics for each structural visual element.

Our blueprint is made up of colored boxes and inner boxes
and links (Figure 1). Such visual representation of the pro-
gram execution is obtained after the completion of the exe-
cution.

Nesting outer boxes represents classes. Inner boxes repre-
sent groups of objects that are either equivalent or near-to-be
equivalent (i.e., without meeting requirement (c) and (d),
about the mutation).

2http://objectprofile.com/#/pages/products/roassal/
overview.html

C2

C1

color # objects

no-mutable
objects

Object Group

Class

black: # object groups > 5% (many groups)
white: # object groups <= 5% (few groups)

C1

C2

C2 inherits C1

border-width:
identityHash calls

red: # mutable objects = 0
white: # mutable objects > 0

color:

Figure 1: Object-Centric Execution Blueprint

Each object group is characterized with two metrics and
two properties:

• height is the amount of (mutable and immutable) ob-
jects that belong to the group, using a logarithmic
scale;

• width is the amount of immutable objects belonging to
the group, using a logarithmic scale;

• presence of a bold border indicates identityHash has
been invoked on any object of the object group;

• color can be red or white, red if all the objects in the
object group do not mutate and white if at least one
of them mutate.

An object group painted in red visually indicates that
all the objects belonging to this group are equivalent. A
white group indicates that the objects are near-to-be equiva-
lent. Such groups may require some further action from the
software engineer to make these objects equivalent.

It frequently happens that instances of a class are hetero-
geneous, which may result in many different groups. Such
situations are discarded from the visualization by using a
threshold number of groups. In our experiment, we consider
a threshold of 5, meaning that groups of a class are shown
if at most 5 groups for 100 instances. The purpose of this
arbitrary heuristic is to reduce the amount of data that would
be difficult to improve.

Figure 1 shows that C1 has three subclasses. Each of them
tells a different story and we need to deal with them in
different ways.

From left to right, class C2 is black filled, meaning that
instances of C2 cannot be grouped into equivalent objects.

The class in the middle has 5 object groups inside, which
means that in this experiment the instances of this class can
only have 5 possible states. Furthermore, one of these groups
is colored red, indicating no mutation occurs for that group.
Objects belonging to that group would have been equivalent
if they had a non bolded border: the message identityHash

is sent to the objects of this group.
The last class of the figure shows a single red object group,

so all the instances of this class do not mutate and have
the same state across all the execution, also nobody called
identityHash on them. This is an excellent opportunity to
use the singleton pattern and reuse a single object to fulfill
the job of all the previously used objects.

3

RODraggableWithVelocity

RODraggable

RONullShape

ROArrow ROExtensibleParent

Figure 2: Object-Centric Execution Blueprint before optimization

Also the visualization provides some interactions to provide
the user the opportunity go deep into the experiment. Just
moving the mouse over a class displays as a tooltip its class
name, the number of instances and the memory consumed
by its instances. Moving over an object group displays the
number of objects, the amount of mutable and non-mutable
objects. Furthermore the tooltip displays whether any object
in the group caused a side effect on its creation, a requirement
settled before reusing the objects.

Clicking the shapes also allows the user to inspect some
objects or browse some classes.

Figure 2 shows an excerpt of the visualization for the unit
test execution of Roassal.

5. IMPLEMENTATION
We briefly describe the two key ingredients to implement

our approach. Our Memory profiler is available under the
MIT License3.

5.1 Gadget profiling
Gadget Profiler4 is a framework for method instrumenta-

tion. It allows the programmer to inject code before and after
every method of an automatically set of selected classes. Also
it provides some essential information about the execution
to be used by the injected code, like the receiver and the
arguments of the message.

Memory Profiler is built using Gadget Profiler. Also
when a method is called we check if the method is the
identityHash, performs a mutation or causes an external
side effect. Finally, it groups the objects as we described
before.

5.2 Snapshotting objects
Keeping track of the side effects may be done in a number of

fashions (e.g., keeping track of the write bytecodes, modifying
the abstract syntax tree [3]). We employ here a technique
based on object snapshotting. We define an object snapshot
as an integer that represents the complete state of an object.
This integer is computed using a bitXor operation between
the identity hash of attributes and the identity hash of object
class.

1 Object>>snapshotAsInteger
2 | index value |

3http://smalltalkhub.com/#!/~ainfante/
MemoryProfiler
4http://smalltalkhub.com/#!/~ainfante/
GadgetProfiler

3 index := self class instSize.
4 value := self class gadgetIdentityHash.
5 [index > 0]
6 whileTrue:
7 [value := (value bitShift: 1) bitXor: (self instVarAt:

index) gadgetIdentityHash.
8 index := index − 1].
9 ˆ value

An object snapshot is useful to compare objects states.
Comparing objects states we can detect: (i) objects that
have the equivalent state, and (ii) if an object has a different
state after a method execution. Both features are essential
to detect equivalent objects.

6. RELATED WORK
Marinov et al. presented Object Equality Profiling (OEP),

a profiling technique to discover opportunities for replacing a
set of equivalent object instances with a single representative
object [2].

Their tool performs a dynamic analysis that records all
the objects created during a particular program run. The
tool partitions the objects into equivalence classes, and uses
collected detail timing information to determine when ele-
ments of an equivalence class could have been safely collapsed
into a single object. They use an instrumentation byte code
technique to record fine-grained information. They insert
instrumentation at the following program points: alloca-
tion sited for objects and arrays, field writes, array element
writes, field reads, array element reads among others. Adding
a considerable overhead.

Our object snapshot technique takes snapshots before and
after a method execution, and saves the last state of the ob-
jects (the last snapshot) causing a significantly lower execu-
tion overhead. And having a trade-off between overhead and
accuracy. We also propose object-centric execution blueprint
as a visual aid to detect, understand, and delete redundant
object.

7. CONCLUSION & FUTURE WORK
Currently, the large majority of code profilers and de-

buggers use inadequate abstractions in their analysis. We
believe this is a critical situation and hope the tool and ideas
presented in this paper will contribute to addressing it.

Thanks to the analysis above, we eliminated more than
5.1% of the identified unnecessary objects refactoring code
using singleton pattern, but working on the analysis and
the abstraction we expect to categorize possible source code

4

refactoring to eliminate the totality of redundant objects.

Acknowledgements
Juan Pablo Sandoval Alcocer is supported by a Ph.D. scholar-
ship from CONICYT and AGCI, Chile. CONICYT-PCHA/
Doctorado Nacional/2013-63130199. This work has been
partially funded by Program U-INICIA 11/06 VID 2011,
grant U-INICIA 11/06, University of Chile, and FONDE-
CYT project 1120094.

8. REFERENCES
[1] Michele Lanza and Stéphane Ducasse. Polymetric

views—a lightweight visual approach to reverse
engineering. Transactions on Software Engineering
(TSE), 29(9):782–795, September 2003.

[2] Darko Marinov and Robert O’Callahan. Object equality
profiling. In Proceedings of the 18th annual ACM
SIGPLAN conference on Object-oriented programing,
systems, languages, and applications, OOPSLA ’03,
pages 313–325, New York, NY, USA, 2003. ACM.

[3] Jorge Ressia. Object-Centric Reflection. Phd thesis,
University of Bern, October 2012.

5

IWST 2013 Selected papers

78

IWST 2013 Author Index

Part III

Author Index

Alcocer, Juan Pablo Sandoval 45
Bhatti, Usman 65
Bergel, Alexandre 73, 65
Bouraqadi, Noury 11
Bera, Clement 27
Bruni, Camillo 53
Cassou, Damien 45
Dehouck, Mathieu 65
Denker, Marcus 27
Dias, Martı́n 45
Drey, Zoé 37
Ducasse, Stéphane 11, 45, 53, 65
Fabresse, Luc 11, 53
Infante, Alejandro 73
Le Lann, Jean-Christophe 37
Polito, Guillermo 11
Sandovar, Juan Pablo 73
Schneider, Jean-Philippe 37
Stasenko, Igor 53

79

	I Full papers
	II Short papers
	III Author Index

