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Introduction

• The Cog VM is the standard VM for:

• Pharo 

• Squeak

• Newspeak
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Introduction
• Working runtime bytecode to bytecode 

optimizer for Cog’s JIT

• The optimizer 

• depends the bytecode set quality

• needs new bytecode instructions
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Introduction

• Design of a new bytecode set
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Plan

• Context 

• Challenges for a good bytecode set

• Current Issues

• New bytecode set

• Switching between bytecode sets
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Context

• Compiled methods are objects

• Shared between the VM and the image
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Object header (8 bytes)

literals (4 bytes per literal)

compiled method header (4 bytes)

bytecodes (variable)

source pointer (variable, usually 4 bytes)

Memory representation of
Compiled Method in 32 bits 

with the new Memory Manager Spur
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Bytecode set

• Stack based

• Interpreted by the StackInterpreter

• Compiled to machine code by Cogit

• Generated by the in-image compiler

Thursday, August 21, 14



Challenges

• Generic challenges

• Challenges for the bytecode optimizer
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Generic challenges

• Platform-independent

• Compact

• Easy to decode

• Backward compatibility

Thursday, August 21, 14



Optimizer challenges

...
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Optimizer
Thursday there’s a talk about it.

• Inlining

• Primitive specialization

Thursday, August 21, 14



Optimizer challenges

• Inlined primitives / unsafe operations

• Large methods

• Access to non receiver instance variable

• Extendable
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Current issues
• Large method unsupported

• Few available bytes

• Primitive encoding forbidding inlining

• DoubleExtendedDoAnything bytecode

• Immediate objects compaction

• Late addition of the closure bytecode
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New bytecode set

• Extendable instructions (prefix)

• Inlined primitives / unsafe operations

• Extendable (available bytes)

• Maximum number of literals increased
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New bytecode set
• Overall bytecode size smaller

• Immediate objects compaction

• Easier decoding

• Sorted by number of bytes

• Sorted by functionalities

• Closure decoding improved
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Bytecode set switch

• Offline converter: hard to debug

• VM supporting two bytecode set

• Bit in compiled method header
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Conclusion

• Designed a bytecode set for runtime 
bytecode to bytecode optimizations

• Next step is to work on the optimizer

• Come at my talk thursday about it
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Questions
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