The OpenPonk modeling platform

Peter Uhnak

Robert Pergl

Department of Software Engineering
Faculty of Information Technology
Czech Technical University in Prague
Czech Republic

{uhnakpet,robert.pergl}@fit.cvut.cz

Abstract

In this paper we present OpenPonk: a free, open-source,
simple to use platform for developing tools for conceptual
modeling: diagramming, DSLs, and algorithms operating
on the models and diagrams, such as automatic layouting,
model transformations, validations, etc.

This project differentiates itself from the current efforts
by providing completely free and open-source live develop-
ment environment, which is simple to learn, use, and extend.

There are already several plugins and extensions that
bring several notations and algorithms, some of which are
presented in this paper, alongside the overview of the core
of the platform, and how they integrate with each other. We
also present a comprehensive project case study utilizing
OpenPonk.

Keywords OpenPonk, modeling, visualizations, Pharo,
DynaCASE, Roassal, UML, BORM

1. Introduction

In this paper we present OpenPonk (formerly known as
DynaCASE) — an emerging modeling platform implemented
in the live environment Pharo[2].

In all engineering endeavours, engineers utilize various
types of diagrams that help them analyze and design their
complex systems; civil engineers use CAD tools, software
engineers use IDEs and CASE tools, and enterprise engi-
neers use CABE tools. Also there are many research groups
that focus on research in some of the aspects of these tools.

Development of such tools is very demanding, because
a lot of effort has to be invested into creating the founda-
tion of the tool such as graphical visualization, interaction

[Copyright notice will appear here once *preprint’ option is removed.]

of graphical objects, persistence, layouting, and general user
interface. To do these projects in high quality requires big
budgets and teams. However, there are often small or mid-
sized research groups and individual practitioners who have
an idea that they would like to implement, whether their own
modeling notation, specific algorithms, model transforma-
tions, simulations, etc. If they attempt to implement their
tool from the scratch, the resulting product ends up often
subpar and isolated from other tools, consequently not used
in the end by a larger audience, thus wasting the ideas and
invested resources. Additionally, resources that should have
been invested into the research itself have to be wasted on
reimplementing solved problems.

This is why we started the OpenPonk platform. We want
to give designers of tools a platform which solves recurring
tasks mentioned above, so they may focus on the core of
their needs.

Our aim is not to replace or compete with existing
industry-standard solutions for standardized notations, such
as UML and Enterprise Architect, although there is some
overlap of functionality. The main focus is to provide plat-
form for tool building for the long tail of non-standard cus-
tom models and algorithms for both research and business.

The core of our tool and current extensions are available
as open-source under the MIT license'.

1.1 Goals and objectives of the paper

The purpose of this paper is to present the current state of
OpenPonk. In the first part, we present a high-level overview
of the core architecture and design behind OpenPonk. In the
second part we overview the general approach and archi-
tecture of user-provided plugins, and how they connect to
the core. In the third part, we present several plugins and
extensions that we currently provide: simulating finite-state
automata, modeling business entities using BORM, describ-
ing models with custom DSLs, and live model manipulation
powered by MetaLinks. In the fourth part we present a use
case study of using OpenPonk as a foundation for existing
research efforts and the support for UML Class Diagrams

Uhttps://openponk.github.io

2016/8/15

with round-trip engineering for CORMAS. Finally, we dis-
cuss related solutions that are currently available.

2. Architecture and design

In this section we present the core architecture of the system
and high level view of the Plugin Architecture, which is
explained in greater detail in the following section.

2.1 Terminology note

We further refer to the foundation of the platform as the core,
and to user-supplied models, notations, and components as
plugins.

Figures or visual elements are entities drawn on canvas,
usually representing a particular model element.

Finally, we use the term user to refer to user-developer,
i.e. a person that is using our platform as a basis to create
or extend a plugin/model/notation. For a user that is simply
using our platform and its extensions as a tool, we will use
the term fool-user.

2.2 Connections between models, view, and controllers

OpenPonk is foremost a meta-modeling platform. Our aim
is to provide the foundation for building modeling tools for
creating and operating on a wide range of models, especially
models that have a direct visual representation — notation. To
represent the model and manipulate it through the notation,
we in principle follow the model-view-controller (MVC)
design [19], however due to possible model limitations we
limit the direct interaction between the model and view and
use controllers instead, as depicted in Figure 1.

update view

View
Roassal canvas

user actions
yodification

change notificat charige notification

Figure 1. MVC design with limited communication be-
tween model and view

2.2.1 Model

The model is the most straightforward part, as it describes
mere meta-models such as UML meta-model, BORM meta-
model or Finite-State Automata meta-model.

2.2.2 View

The primary? view visualizes the notation of the meta-
model. We have chosen Roassal visualization engine[l].
Roassal is a vector-based engine providing a support for
a wide range of needs, such as chart and graph drawings,
map visualizations, etc. It is also used by the Moose reengi-
neering platform [13] for system complexity visualizations.

Importantly for us, Roassal provides a lower-level API
for creating elementary shapes (e.g. ellipse, rectangle, line)
and interactions (e.g. moving elements, resizing elements,
zooming) that can be combined by the implementer to cre-
ate appropriate notation elements. Furthermore, the core of
Roassal is extensible. We created a range of new elements
and interactions, many of which were contributed back to
Roassal itself.

2.2.3 Controllers

Controllers are responsible for interpreting user-triggered
signals coming from the view (adding a new figure, renam-
ing an element, etc.) and for propagating updates to and
from the model (meta-model instance). In the original MVC
design[19], the view is directly observing the changes in the
model and adopting them. We have diverged from this ap-
proach to handle non-observable models and to limit to the
logic complexity in the view.

A lot of complex logic is hidden in the core controllers,
thus simplifying the logic of the user-supplied ones.

2.2.4 Other components

The created models are organized in so-called projects. A
project is a set of models and diagrams that are opened and
stored together. The primary use case of projects is grouping
together models describing various aspects of the modeled
system.

OpenPonk additionally provides a set of prepared GUI
components, and visual extensions that can enhance the pro-
duced tool.

3. Plugin Architecture

The concrete meta-models and their notations are developed
as so-called plugins by inheriting general classes of the core.
Such plugins are independent of each other and can be dis-
tributed separately.

Basic properties of every plugin are described in a sub-
class of Plugin class as shown in Figure 2. At the moment,
specifying only essential properties is necessary: the name
of the plugin, the containment (top-level) meta-model class
(i.e. the model that represents the whole diagram), and a con-
troller class for the containment model. Optionally, the user
can specify an icon (used in various places of the GUI), ver-
sion of the plugin, and serializer used for file-system persis-
tence.

2 Later we introduce secondary views, such as tree-views.

2016/8/15

DCPlugin

icon()

version()

modelClass{)
serializerClass()
diagramControllerClass{)
diagramClass{)

narme()

1N

DCFsmPlugin DCUmIClassPlugin BormDCPlugin
namef() namel) namef()
icon() icon() icon()
modelClass]) modelClass]) modelClass])

serializerClass()
diagramControllerClass()
toolbarMenu:iaBuilder]

serializerClass()
diagramControllerClass()

canvasToolbarFor:(aBuilder)

serializerClass()
diagramControllerClass()
toolbarMenu:iaBuilder]

toolbarienu;(aBuilder)

Figure 2. Plugin description classes

3.1 Model creation

The meta-model infrastructure is the backbone of a plugin,
and all other components® revolve around it. One of our
requirements for the platform is the ability for the users to
use their models. This means not only standard models such
as UML, but also custom models developed by the user to
address their specific business requirements.

A meta-model typically consists of a set of implemented
classes that represent subjects from the modeled domain.
Figure 3 shows an example model of a Finite-State Au-
tomata (FSM) meta-model.

FsmModel
1 owner
owner 1
states
FsmVertex
label : String
source
!)
transitions outgoing |
FsmTransition FsminitialState
matchBlock : BlockClosure

label : String
matches(aValue : Object) : Boolean

incorming

FsmState
target | isFinal : Boolean
1

Figure 3. Example Finite-State Automata meta-model

Integrating models that have been developed indepen-
dently of our tool however presents an integration chal-
lenge, as the model may inhibit some more advanced prop-
erties of the platform. More precisely, many components,
e.g. the notation visualization in particular, require a mech-

3 e.g. visualization, simulation

anism through which changes in the model can be observed
so that they can be updated accordingly. As we noted earlier,
to address this need we delegate where possible the burden
of updates to the controllers. Such an approach does inhibit
some parts of the platform, as updates must go through the
controller (using command pattern or through direct calls),
or the user must explicitly inform the controller that changes
to the model have been made. For the standard approach
where the user creates and manipulates the model through
the provided utilities (e.g. palette, canvas, form editor) this
does not present a problem, as the interactions are automati-
cally wrapped.

We use this approach for our UML plugin that utilizes
the FAMIX|[7] meta-model as the basis for the meta-model.
Although we have extended the FAMIX infrastructure with
additional classes required for UML, we have not modified
the model itself; in fact neither was FAMIX created with our
tool in mind, nor does it provide sufficient mechanisms for
observing changes. Despite this, we were able to success-
fully create a diagramming plugin as the platform is power-
ful enough to handle the problems properly.

Naturally, if the model does provide the necessary mecha-
nism, not only can the implementation be simplified as some
burden is removed from the controllers, but additional pos-
sibilities open up.

3.2 Creating visual elements

Meta-models that we are particularly interested in have an
accompanying visual diagram notation.

Notation Diagram elements
«keywords UMLClassifierShape (Classifier)
. - UMLKeywordLabel (Classifier)
Classifierl - UMLNameLabel (Classifier)
{abstract} - UMLLabel (Classifier)
. - UMLCompartment
attributes - UMLLabel
attributel --- UMLLabel (Property)
inherited attribute2 --- UMLLabel (Property, inherited)
--- UMLLabel
; - UMLCompartment
operations --- UMLLabel
operationl --- UMLLabel (Operation)

Figure 4. Composition of visual elements

In Figure 4 we can see a UML Class composed from
several primitive shapes as prescribed by UML Diagram
Interchange[14].

The creation of the visual element is stored in the appro-
priate controller in the#createFigure method. The only
requirement of the method is that the returned object under-
stands renderIn: aRoassalView. That way, the method can
both directly use Roassal API and return a Roassal element
[Figure 5], or add an intermediate layer [Figure 6].

When the model changes, the figure typically has to re-
flect the new properties of it. The view however is not com-
pletely redrawn when an update is required, instead only the
concerned parts are updated. To tell the platform what and

2016/8/15

E).C Déleme nta r-y;A-c.tdr.RdleCO ntroller >> createFigurelnView:

createFigureInView: aview
| element |
element := (RTBox new
size: OCDDiagramController universalElementSize x;
color: Color white;
borderColor: Color black;
borderWidth: 2) element.

A element

Figure 5. Returning Roassal elements/shapes

x - 0 Code panel -

b.C UmlAttributeController >> cre ateFigure

createFigure
A DCUmlLabel new
modelElement: self model;
text: self model name;
owningElement: classController
diagramElement compartments first;
localstyle: DCUmLlStyle new;
yourself

b.CU-r;{I_Léb_el_ >> renderin:

renderIn: aView
self rtElement view ifNotNil: [A self].
aView add: self rtElement.
aView signalUpdate

b.C U-r;{ ILabel >> createRtElement

createRtElement
A RTStyledLabel new
height: self style fontSize;
color: self style fontColor;
text: #text;
emphasis: #emphasis;
elementOn: self

Figure 6. Using an intermediate layer

how should be updated, the user implements a #refreshFig-
ure method in the accompanying controller. In this method
updates such as changing text content, colors, adding and
removing subelements, etc. can occur. The #refreshFigure is
automatically called by the platform after a model change
was detected, this can either be a result of the platform
observing changes in the model (if possible), or when the
model was modified through one of the platform’s editing
interfaces. With this approach the user does not need to con-
cern themselves when an update should occur.

In addition, if the model provides sufficient observation
granularity, the figure can directly observe the model and
update accordingly.

3.3 Controllers

Controllers are the glue between the model and views. The
most common approach is to have a controller for each
model element (e.g. a Method and a MethodController,
Classifier and a ClassifierController, etc.). De-
pending on the appropriate granularity, additional responsi-
bility may be taken (e.g. MethodController also handling
Parameter model elements).

Apart from responsibility of creating the view described
in the previous sections, two more Ul-related interfaces are
provided:

1. Each model element has typically a different set of prop-
erties that are modified by the tool-user. Therefore, each
controller is free to override the buildEditor: method
and to specify a custom Form consisting of the appropri-
ate form elements (e.g. input text, droplist, checkbox),
and the binding between the model and the form el-
ements. This form automatically opens when the tool-
users selects a model element.

2. Each diagram (notation) is usually accompanied by a dif-
ferent palette. The responsibility of the Diagram Con-
troller (the master controller for the diagram) is to im-
plement the palette specification [Figure 7]. The platform
will then handle the actual creation of the appropriate ob-
jects when the tool-user selects one of the items and in-
teracts with the canvas.

x - O Code panel -

Iy select]

DCFsmController >> initializePalette:

® Initial state initializePalette: aPalette
aPalette
newCreationTeol: 'Initial state'
Oslale factory: [DCFsmInitialStateController new]
N dcon: DCIcons current dcFsmInitialStatelcon;
©Final state
newSeparator;

newCreationTool: 'State'
factory: [DCFsmStateController new]
dcon: DCIcons current dcFsmRegularStatelcon;
newCreationTool: 'Final state'
factory: [DCFsmFinalStateController new]
dicon: DCIcons current dcFsmFinalStateIcon;
newSeparator;
newConnectionCreationTool: 'Transition’
factory: [DCFsmTransitionController new]
icon: DCIcons current dcFsmTransitionIcon

~> Transition

Figure 7. Palette specification

3.3.1 Connecting elements and live validation

Models elements, and their visual representations rarely live
by their own. Instead, they are connected through refer-
ences or compositions. The connection is accommodated
by four functions implemented in the controllers: #canBe-
SourceFor:, #canBeTargetFor:, #addAsSourceFor:, #addAs-
TargetFor:; the full signature being receivingController For:
aNewController*.

The purpose of the #canBeFor:* methods is to decide
whether the receiving controller accepts the argument, if

2016/8/15

they return false, the connection cannot proceed and the
#addAsFor:* methods will not be called.

The #addAsFor:* methods contain the behavior asso-
ciated with connecting the elements. For containers only
#TargetFor:* is required. If, however, the created element
is a binary association (typically an edge), the first (source)
controller will implement the #SourceFor:* methods, and
the second (target) controller the #TargetFor:* methods.

In addition, the platform automatically uses the result of
#canBeFor:* to display visual feedback on top of the visual
element, such as green or red overlay if the element can or

cannot be connected [Figure 8].

purchase complete driving back

Figure 8. A communication can end in an activity (oval
shape), but not in a state (rectangle shape) in BORM

x - O Code panel -

Zorm-Editor-Cont M
BormStateController > canBeTargetFor:

canBeTargetFor: aController
A (aController
isKindOf: BormTransitionController)
and: [aController source
isKindOf: BormActivityController]

2 orm-Editor-Cont M
BormActivityController > canBeTargetFor:

canBeTargetFor: aController
A ((aController

isKindOf: BormTransitionController)

and: [aController source
isKindOf: BormStateController])

| k{aController
isKindOf: BormCommunicationController)
and: [aController source model owner

~= self model owner])

Figure 9. Code describing live validation

Figure 9 shows that StateController can only be a
target for a transition originating from an activity, whilst
ActivityController can be also a target for a communi-
cation from an activity from a different participant (owner).

What may be unusual is that this validation does not fully
rely on the model, instead the checks are made against the
controllers. We have chosen this approach, as during more
complex creation not all information may be available in

the model, and the new model element is typically not yet
connected with the present model, that is, sometimes we
cannot decide whether an element can be connected only
after it has been already connected. Thus complex meta-
model structures can force the user to create only a partially
valid model.

But the purpose of the live validation is not to always have
fully valid model, instead it is a quick and cheap* to prevent
common errors, similarly to a code editor warning a user
of a missing semicolon or invalid syntax. For a full model
validation, the user is free to implement a more powerful
validation checker operating on the full model, as may be
seen in Figure 10 for the case of an OntoUML validation
editor[10].

4. Extensions and notations

We design the platform to be extensible and usable in differ-
ent contexts and scenarios. To illustrate the wide possibili-
ties, we present several quite different extensions that have
been developed on top of the platform.

4.1 Model editing and live scripting

There are two principal ways in which a tool-user can mod-
ify meta-model instances. The first one is through the editors
and tools provided by OpenPonk. This approach is common
to majority of modeling tools (whether implemented in Java,
C++, JavaScript, or Pharo). The popularity of this stems
mainly from its ease-of-use, as the user is guided and hand-
held by the tool’s graphical interface, so the user does not
accidentally corrupt the model. Moreover, the user does not
need to be completely familiar with the actual meta-model
implementation.

The second way is the ability to programatically ma-
nipulate the model, which offers interesting possibilities.
Advanced modeling tools built in non-live environments
(such as Java) address this by providing a special manipula-
tion language that enables the user to query and manipulate
the model, such as the Epsilon Object Language[5] for the
Eclipse platform. There are, however, major downsides to
this approach: implementing such a query language requires
additional engineering effort on the part of the tool devel-
oper, while learning the query language requires additional
effort on the part of the tool user. Furthermore, the language
can be limiting in its capabilities and its usability, as without
proper tooling support, aiding the user in creating, debug-
ging, and working with the language may be limited.

We have mitigated this problem by choosing the Pharo
live programming environment[2]. Pharo can be compared
to a programming language, IDE, and an operating system
rolled into one. In this platform, both the (tool-)user and the
developer have direct access to objects in the system. This
means that instead of using a specially crafted language,
the user can directly use the Pharo language with all the

4 Requires no extra effort from the tool-user.

2016/8/15

x — 0O

Found 2 syntax errors -

1 Relation Characterization name: ; one association end must be connected to Mode or Quality.
2| Stereotype Kind name: DCProject; cannot have RigidSortal supertype.

Validate diagram syntax rules

<<kind=>

collection : Float[*]

o

==subkind== 1
DCDiagram

DCModelObject g

<=characterization==

<=subkind=>
DCNamedElement

1

Ermpty GenSet

DCProject

<<kind=>

0.1

diagrams

Figure 10. Full model validation of OntoUML diagrams

powerful tools and support available in Pharo for regular
development.

Naturally, in some contexts, providing an alternative way
and a specific manipulation language may be beneficial,
however by choosing Pharo we already have a powerful
language applicable for all meta-models without any extra
engineering effort required.

4.2 Observing model changes with MetaLinks

As we noted earlier, to be able to directly manipulate the
meta-model instances and to be able to immediately see the
changes in the diagram, the meta-model code base has to
offer an API through which changes can be observed. Do-
ing so, however, requires modification of the code, which
in some cases may either not be possible, or it may intro-
duce unreasonable overhead (e.g. from performance point
of view).

To address this issue, one can make use of MetaLinks
[4]. MetaLinks are a recent addition to Pharo that allows in-
stalling additional behavior to methods® without modifying
the code itself. Therefore one can define code extensions that
would announce changes to the model, and those extensions
would be then installed to the methods on demand, without
affecting the original code base. As the MetaLink’s inter-
face is very low level, we have developed an open-source
toolkit that would simplify the most common use cases, by
the name of MetaLinks-Toolkit®. Albeit this toolkit is still
in its early stage, one can utilize it to ease the MetaLinks
integration. Figure 11 shows a code installing observations
to a code base. After the installation, when the specified at-
tributes have been modified, the objects fire announcement
instances that can be observed. We have experimentally used

5 To individual nodes of the method’s abstract syntax tree.
6 Available online: https:/github.com/peteruhnak/metalinks-toolkit

observations := {
MTObservationSet
target: MTElement
change: #(name owner uuid)
add: #()
remove: #().

MTObservationSet

target: MTContainer

change: #()

add: #(add:)

remove: #(remove:)
1.
ci := MTMetaLinksChangeInstaller new.
ci install: observations.

element := MTElement new.

container := MTContainer new.

"Now we can use normal Announcement propagation’

element when: ValueChanged do: [:oldValue :newValue | ...].
container when: ValueAdded do: [:newvalue | ...].

container when: ValueRemoved do: [:newValue | ...].

Figure 11. Installing MetaLinks-based observations

this toolkit on our BORM meta-model, however our aim is
to provide such augmentations for the FAMIX meta-model.

4.3 Simulating Finite-State Automata

In this section, we demonstrate an unanticipated integration
of a finite-state automata simulator (FSA).

When an integration is anticipated, an API can be imple-
mented that properly handles the needs and abstractions for
the to-be-integrated tool. Handling all possible cases, how-
ever, requires many layers of abstraction, which not only
have to be implemented on the platform-side, but, more
importantly, every time a user wishes to create an exten-
sion. Thus, apart from solving the inherent complexity of the
problem, the user is forced to address incidental complexity
of the platform, as well.

2016/8/15

1. compute active \.rer‘tex.fnodg -

(©simulator - 2-retrieve figure for active vin_ L, 1@ esucontroler
- M changefigure's color

Figure 12. Simulator accessing different parts of the editor

The FSA simulator uses direct read-only access to the
model and read/write access to the view. The model is used
to compute the next step of the simulation, but no changes
to the model are required. On the other hand, to visualize
the progress through the simulation, the simulator directly
modifies the view. It asks a diagram controller (responsible
for managing the view) for an appropriate view element
for the currently active node or edge and then changes the
visualization (Figure 12) through the low-level Roassal API,
or with the aid of existing OpenPonk-Roassal extensions.

In such an approach, both the FSA editor’ and the Open-
Ponk platform are unaware of a third-party tool accessing
their parts, therefore no explicit action is required of them
(i.e. providing a special API).

Naturally, this approach requires the third-party tool to
properly clean up after themselves, as the platform does not
know what changes were made and what changes should be
reverted.

Although such a third-party tool may inadvertently break
the model or the view, we consider such risk acceptable, as
this approach shortcuts otherwise complex implementation
to bare essentials, which we find especially valuable for
research and experimenting with and prototyping emerging
ideas, which is one of the core aims OpenPonk. A more
sophisticated and robust solution can always be introduced
later.

4.4 DSLs for BORM and Class Diagrams

Although the tool-user creates a model primarily through
the diagramming interface, there are other ways to create
the model: importing from a different tool (via an exchange
format such as XMI), transforming from other representa-
tion (reengineering source code), manually creating the re-
quired classes (via a programmable API), using a domain-
specific language and possibly others. Choosing the best way

7 The plugin(s) implementing the FSA meta-model and the notation.

is heavily context-dependent, therefore many tools will pro-
vide multiple options for the user.

To address this need, we have introduced a domain-
specific language for two of our meta-models: BORM[9]
and UML Class Diagrams[14].

Even though both models have visual notations, some
users may prefer to describe their model using text, and
possibly only adjust the layout of the resulting visualization.
This is not a new approach and many tools provide this
functionality, such as PlantUML[18]. Unfortunately, they
often stop at the production of the visualization and there
is no real model behind it, which the user can manipulate,
transform, validate, etc. Our aim is to provide a DSL for
model creation, not just visualization creation.

For the implementation of our DSLs we have chosen
PetitParser[20]. PetitParser enables an easy creation of com-
posable grammars by describing the grammar directly with
Smalltalk code in a regex-like syntax.

For the need of editing the model via a DSL, we have
introduced a DSL editor to the OpenPonk core. This edi-
tor is directly connected with the currently opened Work-
bench Editor, and the user can modify the model through
it; saving the text in the editor updates the model, and re-
freshing the editor produces the textual representation of the
model, as seen in Figure 13. The DSL editor synergizes with
the classical diagramming interface, as the user can arbitrar-
ily switch between them. As describing a model with text
lacks certain diagram information, most notably the layout
position, we have introduced a set of layouting algorithms
to OpenPonk[16] that are automatically applied to the dia-
gram; thus the user always sees a readable diagram instead
of a stack of overlapping elements.

5. Practical case study: UML Round-trip
engineering for ABM platform CORMAS

As our aim is to provide a platform for tool building, here
we present a case study where OpenPonk was successfully
used.

In collaboration with Cirad RU Green — a research group
focused on addressing the needs of environmental research
and sustainable agriculture — we have developed a UML
Class Diagram Editor with round-trip engineering support
for CORMAS agent-based modeling (ABM) platform[3] as
a plugin for OpenPonk[17].

The users of CORMAS follow the participatory model-
ing (PM) approach in which the users (also known as stake-
holders) collaborate on analyzing, creating, and implement-
ing the domain model and the implementation solution.

For CORMAS, the stakeholders consist primarily of re-
searchers and experts in the target domain; both, however,
being seldom experienced programmers.

This presents a real challenge, as even though they are
capable of creating the necessary models (the stakeholders
pass a UML modeling course), they do not posses the suf-

2016/8/15

x - 0
[Project w Editor »

v E Pizza Delivery (ORModel)

* Pizza Delivery - DynaCASE =

» [Customer (Participant)

/ g PizzaDelivery x|

A4 Onarator (Particinant]
x - 0 DSL Editor -
P = [«
+ New Klsave K saveas.. [J0pen [T0pen Editor Customer -
" N =] izza
1| Person "Customer” { wants pllla) P
2 initial state "wants pizza”
2 go to "ordering pizza via phone”
4 =1l
5 activity "ordering pizza via phone" ordering pizza via phone
6 send "pizza description” to
"Operator::processing order"
7 go to "waiting”
8
LA waiting
N state "waiting -
10 go to "accepts pizza and pays"
11
12 activity "accepts pizza and pays"
13 go to "purchase complete” accepis pizraandpays
14
15 final state "purchase complete”

16|}

18 | System "Operator” {
19 activity "processing order”

escriptio

| L

20 go to "order accepted” \d

Refresh from Model

= Zoomout '} 100% (s Zoomin View All

L Select
Operator E}
% Participant
processing order
or,
La W State
& Activity
order accepted
A Transition

C* communication

passes order
||

«* Data Flow

F[constraint

Figure 13. DSL editor on a BORM model

ficient programming knowledge and experience to correctly
implement the model. For this reason, we have incorporated
a support for round-trip engineering into our UML Class Di-
agram Editor. The objective is not to fully automate the pro-
cess, but to aid with one of the challenging parts — creating
the class structure from the model and vice versa.

The user can create the necessary model expressed in
the UML notation with the diagram editor; for the needs of
CORMAS we focus on a subset of UML notation typically
used in class diagrams — classes, attributes, methods, asso-
ciations, generalizations. The generator generates the nec-
essary classes and methods in Pharo Smalltalk from the cre-
ated model. Because the CORMAS platform is implemented
in the VisualWorks Smalltalk (VW), we use the Smalltalk
Interchange File Format® to exchange the source code be-
tween VisualWorks and Pharo, although direct code genera-
tion for VW has also been considered. For associations, we
have chosen a straight-forward approach of providing acces-
sors and add/remove methods®, so that update on one side
automatically updates the opposite sides. Other approaches
have been researched [6]. These adhere more closely to the
UML specifications, especially on maintaining visibility and
multiplicity constraints of the associations; we found them
needlessly complex in the context of the CORMAS plat-
form, however for general-purpose forward engineering they
may be suitable.

8 SIF. Available online: https:/github.com/peteruhnak/sif/blob/master/docs.md

9 Add/remove methods are used for collection-based associations — associ-
ation ends with multiplicities > 1

Person

name : String
contact : Contact[1..*]

Teacher
gradeTests:(test : Test[*]): Number[*]

president

teachers

memberOf A* 1

university

Department

departments university

Figure 14. Example model

One of the important implemented features is the abil-
ity to reverse-engineer a model. In an ideal Model-Driven
Development (MDD) scenario, only models are ever being
manipulated and the code is always fully generated [11].
This, however, requires a very powerful modeling platform
that is capable of describing every aspect of the software
with models, which we currently do not provide. If there
are modifications to the source code being made, the devel-
opers start to create discrepancies between the code and the
model. It is possible to manually update the model each time
the code has been made, that however poses the risk of com-
plete abandonment of the original model if the discrepancies

2016/8/15

x - O Department>>#addTeach -

Scopi Varial History Navigator v -
! Department —all- addTeacher:

! Person accessing ~ initialize

! Role adding/removing removeTeacher:
! President < initialization teachers

! Teacher teachers:

! University university

AH ©c ? G university:
addTeacher: aTeacher
(teachers dincludes: aTeacher)
ifTrue: [* self].
teachers add: aTeacher.
aTeacher addMemberOf: self

1/5[1] Formatasyouread W +L

Figure 15. Classes and methods generated from the model

pile up beyond a threshold. Instead, we allow the developer
to regenerate the model directly from the code.

Providing a generic reverse-engineering support is a chal-
lenging task, especially in dynamic languages, as the real
types and constraints are known only during runtime, and
reverse engineering certain constructs — associations in par-
ticular — may not be possible at all. As the models for COR-
MAS are not generic and therefore we can constrain the
problem, we have provided an alternative solution. During
the source code generation we add additional information to
the source code — namely we add pragma annotations to the
generated methods. They add meta-information that would
be otherwise lost, as there is conceptual gap between the
model and the code. With such approach during the reverse-
engineering, we can reuse this meta-information to aid with
the regenerated model. By putting the meta-model infor-
mation directly alongside the related code, we also lower
the probability of introducing discrepancies, as a developer
modifying the code will be more likely to also update the
meta-information because it is already part of the modified
code.

x - O Code panel -
Universit M
Person >> contact

contact

<DCType: 'Contact' multiplicity: #(1 'x')>
A contact ifNil: m
contact := OrderedCollection new]

Figure 16. A generated method with additional meta-
information stored in a pragma

6. Graphical user interface

The graphical user interface of the application is imple-
mented using the Spec[22] framework.

Figure 17 shows the composition of GUI elements. The
top-level window of the OpenPonk application is a Work-
bench. A workbench is always tied to a single project and
has the responsibility of containing other parts of the GUL

For each model in the project, an Editor can be opened
within the workbench. The workbench organizes the editors
in tabs, therefore several editors/tabs can be opened at once,
although only one can be visible at a time.

The editor contains subwindows necessary for the dis-
play and manipulation of the model’s notation — the Can-
vas (Roassal View) showing the visualization itself, a Palette
providing a set of buttons for adding new items to the canvas,
and an extensible bottom toolbar providing some manipula-
tion buttons with easy access to the tool-user. Most of the
GUI windows provide an API through which the user can
manipulate them and describe their content.

Navigator: a tree-like view that visualizes the instances
of meta-model elements in the project associated with the
workbench; Form: a form editor for the currently selected
meta-model instance capable of modifying its various prop-
erties; and finally a top toolbar that can be extended by plu-
gins.

6.1 Connecting with plugins

Every window that is a part of the Workbench can be modi-
fied in some way by a plugin. Each window provides its own
API appropriate to the situation.

The Navigator will ask the plugin’s definition file about
the structure of the model and how the model should be
properly displayed, this consists primarily of specifying how
to access the child nodes, element names, and icons as shown
in Figure 18.

Both the Workbench menu (the toolbar in the top part of
the Workbench), and Editor menu (underneath the canvas)
can be extended. To extend any of the menus, a pragma'®
has to be added to a class-side method. OpenPonk will scan
for methods containing the pragmas and call the methods
when appropriate, as displaying the menu extensions can be
restricted only show only if an editor of a particular plugin is
selected. By choosing a pragma to implement this behavior,
we have added extra flexibility as not only the plugin itself
can customize the menus (the most common use case), but
also any extra (or third-party) utility, without interfering with
the plugin itself (e.g. a simulator window adding “Open
simulator” button).

7. Related Work

Several related works exist; we split them into three groups
and address each individually: (i) stand-alone tools and en-

10Pragma is a method annotation that can be located in the system via
reflectivity.

2016/8/15

= = [Pizza Delivery - DynaCASE Workbench -
[Project » J Editor v
Pizza Delivery (ORMode “lf / (&3 Pizza Delivery ~ x \ Plugin Editor - IName
¥ [Customer (Participz Customer
¥ WP wants pizza (Stz 64 % . L} Select
A (Transition) Roassal View B .
o Customer =) Tools Palette 1) Person
¥ & ordering pizzav .
/" (Transition) ™ Participant
¥ S¥ (Communic piksdscipton Operator @ e Form Editor
¥ pizza de: ndering piza viaphena |
» WP waiting (State) E B State
B ader .
Model Navigator . B Activity
W purchase compl | orderaocepted -
¥ [Operator (Participa
» & processing orde ﬁ“mpmmpgys i] / Transition
» W order accepted ﬁ—/ CX Communication
» & passesorder (Ac — =
WP order processec M [o
» [Kitchen (Participani « Data Flow

» [Delivery Boy (Partic

=, Zoomout -4 100% (& Zoomin View All

V[constraint

Figure 17. GUI overview

x - O x - O Code panel <

]

[Project] Editor v

v (& Pizza Delivery (ORModel) BormNavigatorAdapter >>iconMapping
¥ & Customer (Participant)
» WP wants pizza (State)
¥ /& ordering pizza via phone (Activity)
A (Transition)
v & (communication)
pizza description (DataFlow) T
» W waiting (State) i dap!
» & accepts pizza and pays (Activity)
W purchase complete (State)
» {8 Operator (Participant)
» { Kitchen (Participant)
» {8 Delivery Boy (Participant)
» % Cashier (Participant)

iconMapping
A {DCModelObject > [:o | BormEditorIcons current perform:

((self bormNameFor: o) uncapitalized , '16Icon') asSymbol]}

childrenMapping
4 {BormORModel -> #participants.
BormParticipant -> #nodes.
BormState -> #outgoing.
BormActivity -> [o | o outgoing , o sent 1.
BormComnunication -> [:o | o dataFlows , (o constraint
ifNil: [#()] ifNotNil: [{o constraint} 1) 1.
BormTransition -> [o | o constraint ifNil: [#()]
ifNotNil: [{o constraint} 1 1}

BormNavigatorAdapter
bormNameFor:
childrenMapping
displayMapping
hasMappingFor:
iconMapping

Figure 18. Specification of Navigator for BORM

vironments, (ii) Eclipse-based tools, and (iii) Eclipse itself.
The first group contains stand-alone tools and environments
that do not rely on any outside solution. MetaEdit+ and En-
terprise Architect are typical representants of this group.

Enterprise Architect (EA)[21] offers an industry-grade
MDA solution for UML and UML-based models (such as
BPMN). EA provides support for the complete develop-
ment life-cycle including requirements engineering, model-
ing, source code generation, round-trip engineering, testing,
and more. While OpenPonk has been created with similar
use-cases in mind, we provide it for free, as open-source,
and platform independent (EA supports only Windows). By
choosing Pharo live environment, OpenPonk can also offer
significantly more interactive options.

MetaCASE[12] provides a solution for designing custom
domain-specific languages (concepts, rules, notations, code
generators) with its MetaEdit+ Workbench aimed at expert
developers, and a MetaEdit+ Modeler aimed at model users.
The same comments hold as for EA.

The second group of tools includes a wide spectrum of
modeling tools such as Modelio, Papyrus, OpenCABE (our
original BORM tool[15]). These tools are created on the
Eclipse platform through its Graphical Modeling Project
(GMP), which includes Graphical Modeling Framework
(GMF) and Graphical Editing Framwork (GEF) [8]. Such
tools usually focus on a single model family and they are
limited in their meta-modeling abilities.

Finally, the Eclipse platform itself (alongside its GMF
and GEF frameworks) provides a strong foundation for mod-
eling and meta-modeling tools — that is not only the devel-
opment of the models themselves, but also the creation of
additional tools and extensions operating on the models. Our
OpenCABE[15] tool used for BORM modeling has been de-
veloped in Eclipse, so we have a very strong experience in
this area. Eclipse platform is a very complex artefact with a
steep learning curve. However, this would not be critical if
the big investment in the development pays off in the form
of resulting flexibility and ease of enhancements. Unfortu-
nately, in our experience, it is not the case. On the contrary,
the bigger the platform code base, the harder is to extend it
with additional models, visualizations, simulations and other
algorithms. After 6 years of development, we were not able
to give the platform to students to easily implement their
conceptual modeling ideas. With OpenPonk, we already had
several successful student projects. As for the reason of this
situation, we blame the incidental complexity of the Eclipse

2016/8/15

platform. As a more in-depth analysis is out of scope of this
paper, let us just put a hypothesis that this incidental com-
plexity comes from the limited dynamic and reflective pos-
sibilities of the Java platform; on the other hand, live, dy-
namic possibilities of Pharo enabled us to significantly limit
the code base to the inherent complexity of the problem.

8. Summary, conclusion and future work

OpenPonk project is the flagship of our research group, as
we deal with various conceptual modeling notations, making
models and performing algorithms on them. The project
was initiated because of the lack of suitable free, open-
source, simple, and extensible platform. The architecture of
OpenPonk has been inspired by our extensive experience
with the Eclipse platform. We took the best architectural
ideas and stripped off the fat and gore by implementing it
using the Pharo live programming environment.

The platform has been designed as highly modular — a
minimal core extended by plugins and extensions. We have
been also very keen about separation of concerns — model,
view and controller are separated and various options for
acquiring models are open: drawing diagrams, importing
from an interchange file, reverse-engineering source code,
DSL parsing, and other. The separation of concerns enables
existing meta-models to be enhanced and used in OpenPonk
without modifying their code.

OpenPonk stands for “dynamic”: the meta-model and
model development is highly interactive thanks to the live
nature of Pharo. Querying and manipulating models on-the-
fly is “for free”.

OpenPonk is still in an early stage in many aspects. How-
ever, several quite diverse projects were successfully imple-
mented using the platform, which demonstrate the possibili-
ties. Several bachelor and master students were already able
to acquire a working knowledge of OpenPonk and imple-
ment their ideas. This is very encouraging for us, as our ulti-
mate goal is to offer a playground that will be loved by stu-
dents, researchers and practitioners. With every new project,
the platform matures and offers more for everybody. The
adoption by community is very important in this point and it
will direct the future development. The development of the
core itself focuses on providing a stable minimalistic, yet
powerful, foundation for tools building via plugins develop-
ment.

As for the current endeavours, we cooperate with ForMetis
Enterprise Engineers, a Dutch consulting and development
company, to implement simulations and validations for en-
terprise engineering models and we are in a close con-
tact with INRIA Lille Nord Europe and the University of
Antwerp, who are interested in cooperation.

Acknowledgments

Currently, the development of OpenPonk is sponsored by
ForMetis Consultants'!, our Dutch industrial partner. The
development of the round-trip engineering support and par-
tially the UML Class Editor for ABM CORMAS has been
financed by RU Green CIRAD'?. The development of the
MetaLinks Toolkit has been sponsored by Synectique'® and

ESUG through it’s mobility support program'*.
References
[1] Alexandre Bergel. Agile Visualization. 2016. URL

agilevisualization.com.

[2] A. Bergel, D. Cassou, S. Ducasse, J. Laval, and J. Bergel.
Deep into Pharo. Square Bracket, [S.1], 2013. ISBN 978-
3-9523341-6-4.

[3] P. Bommel, N. Becu, C. Le Page, and F. Bousquet. Cor-
mas, an Agent-Based simulation platform for coupling
human decisions with computerized dynamics. 2015.
https://agritrop.cirad.fr/576753/2/Cormasforlsaga2015.pdf.

[4] M. Denker. Sub-method Structural and Behavioral Reflection.
PhD thesis, University of Bern, 2008.

[5] Dimitris Kolovos, Louis Rose, Antonio Garcia-Dominguez,
and Richard Paige. The Epsilon Book, volume 20. 2016.

[6] Dominik Gessenharter. Implementing UML associations
in Java: a slim code pattern for a complex modeling con-
cept. In Proceedings of the Workshop on Relationships
and Associations in Object-Oriented Languages, RAOOL
09, pages 17-24, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-549-9. doi: 10.1145/1562100.1562104.
URL http://doi.acm.org/10.1145/1562100.1562104.
00008.

[7] S. Ducasse, N. Anquetil, M. U. Bhatti, A. C. Hora, J. Laval,

and T. Girba. MSE and FAMIX 3.0: an interexchange
format and source code model family. 2011. URL
https://hal.inria.fr/hal-00646884/.

[8] Eclipse. Graphical Modeling Project. ~ 2016. URL

https://eclipse.org/modeling/gmp/.

[9] Martin Podloucky and Robert Pergl. Towards Formal Foun-
dations for BORM ORD Validation and Simulation. pages
315-322. SCITEPRESS - Science and and Technology Publi-
cations, 2014. ISBN 978-989-758-027-7 978-989-758-028-4
978-989-758-029-1. doi: 10.5220/0004897603150322.

[10] Matd$ VoloSin. Vizualizace instanci OntoUML modelu.
Diplomova prica. Praha: Ceské vysoké aleni technické v
Praze, Fakulta informacnich technologii, 2016.

[11] S.J. Mellor and M. J. Balcer. Executable UML: a foundation
for model-driven architecture. Addison-Wesley, Boston ; San
Francisco ; New York, 2002. ISBN 978-0-201-74804-8.

[12] MetaCase. MetaEdit+, 2016.
http://www.metacase.com/.

URL

1 http://formetis.nl/

12 http://ur-green.cirad.fr/

13 http://synectique.eu/index.php

14 http://esug.org/wiki/pier/Promotion/Mobility

2016/8/15

[13] O. Nierstrasz, S. Ducasse, and T. Grba. The story of
Moose: an agile reengineering environment. ACM SIG-
SOFT Software Engineering Notes, 30(5):1-10, 2005. URL
http://dl.acm.org/citation.cfm?id=1081707.

[14] OMG. OMG Unified Modeling Language (UML) 2.5, Mar.
2015. URL http://www.omg.org/spec/UML/2.5.

[15] R. Pergl and J. Tima. OpenCASE a tool for ontology-centred
conceptual modelling. In Advanced Information Systems En-
gineering Workshops, pages 511-518. Springer, 2012.

[16] Peter Uhndk. Layouting of Diagrams in the DynaCASE Tool.
Bachelor’s thesis. Czech Technical University in Prague, Fac-
ulty of Information Technology, 2016.

[17] Peter Uhndk and Pierre Bommel. Facilitating the Design
of ABM and the Code Generation to Promote Participatory
Modelling. 2016.

[18] PlantUML. PlantUML Language Reference Guide, 2016.

[19] S. T. Pope and G. E. Krasner. A Cookbook for Using
Model-View-Controller User Interface Pradigm in Smalltalk-
80. 1988.

[20] L. Renggli, S. Ducasse, T. Grba, and O. Nier-
strasz. Practical dynamic grammars for dynamic
languages. In 4th Workshop on Dynamic Lan-
guages and Applications (DYLA 2010), 2010. URL
https://hal.archives-ouvertes.fr/hal-00746253/.

[21] Sparx Systems. Enterprise Architect, 2016. URL

http://wuw.sparxsystems.com/products/ea/index.html.

[22] B. Van Ryseghem, S. Ducasse, and J. Fabry. Seamless com-
position and reuse of customizable user interfaces with Spec.
Science of Computer Programming, 96:34-51, 2014.

2016/8/15

