Linked Weak Reference Arrays
A Hybrid Approach To Efficient Bulk Finalization

Andrés Valloud

LabWare, Inc.
public.andres.valloud@gmail.com

Abstract

The present work describes a challenging, real-life finalization sce-
nario that applies combined scalability and resource utilization
pressure. Neither weak reference arrays nor ephemerons satisfac-
torily address the performance-critical demands. Confronting these
existing limitations requires a new strategy. The proposal is a hy-
brid weak arrayed container with properties from both weak refer-
ence arrays and ephemerons. This approach relies on support from
a memory manager allowing dynamic slot reference strength.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Dynamic Storage
Management

Keywords Smalltalk, GemStone/S, finalization, ephemeron, weak
reference, weak array, memory management, garbage collection

1. Introduction

This paper discusses Smalltalk memory manager improvements
to simultaneously maximize finalization throughput and minimize
memory usage. These refinements address scalability limitations
exposed by increased resource utilization pressure. Specifically,
both weak reference arrays and ephemerons are insufficient when
ideal performance is required: weak reference arrays offer compact
storage at the cost of comparatively inefficient finalization, while
ephemerons provide especially efficient finalization at the cost of
increased memory usage. Enhancing a memory manager to sup-
port dynamic slot reference strength proved insufficient to reach
ideal performance. However, the present proposal builds on these
latter enhancements to introduce a new finalization container — the
linked weak reference array.

From 2007 to 2014, the author worked on the HPS Smalltalk
virtual machine originally described in [1]. GemTalk Systems dis-
tributes the GemStone/S Smalltalk implementation, which can be
used as an object database. Several GemTalk customers deploy
GemStone/S database clients on HPS systems. Over time, strate-
gic teamwork with GemTalk’s engineers resulted in significant im-
provements to HPS’ memory manager. This collaboration, now
continuing beyond the context of HPS, ultimately led to the present

paper.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IWST 15, July 15th, 2015, Brescia, Italy.

Copyright is held by the owner/author(s).

ACM 978-1-nnnn-nnnn-n/yy/mm.

http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

2. Background
2.1 Weak arrays and ephemerons

In general terms, Smalltalk implementations support two modes of
object finalization [2]: arrays of weak slots called weak arrays, and
ephemerons.

Briefly, weak array finalization operates in the following man-
ner. When the system’s garbage collector detects a weak slot ref-
erent is not referenced strongly elsewhere, the corresponding weak
array slot is overwritten with a special object called a fombstone
and the weakly held object is collected. At this point, the weak ar-
ray is entered in a finalization queue so the application is eventually
notified of newly tombstoned slots in the weak array. Upon receiv-
ing this notification, the weak array object is said to mourn. When a
weak array mourns, it carries out finalization actions corresponding
to the tombstoned slots.

Note slot tombstoning is carried out by the garbage collector,
while mourning is delegated to the application. This responsibility
distribution lets system users specify arbitrary finalization actions.

In Smalltalk implementations, the typical tombstone object is an
immediate such as the small integer zero. Although some Smalltalk
systems use the object nil as a tombstone, using immediate objects
as tombstones is preferable because it simplifies the semantics of
storing non-immediate tombstone objects in weak arrays. That is,
since immediate objects are never garbage collected, small integer
tombstones cannot be tombstoned themselves.

Recall that Smalltalk indexed slot objects can also have non-
indexed fields. Typically, weak arrays have weak indexed slots,
and strong non-indexed fields. Thus, weak array mourning requires
determining which indexed slots have been tombstoned. Moreover,
pragmatic finalization requires copying sufficient information from
the weakly held objects (e.g. operating system handles), because
weakly held referents will have been collected by the time the weak
array mourns. If these copies are not made, there is the risk of
referencing the weakly held object strongly. In that case, the weak
slot will never be tombstoned.

These weak array inefficiencies were addressed by ephemerons
[2]. In contrast with weak arrays, each ephemeron is responsible for
finalizing a single object. As a result, ephemeron finalization obvi-
ates the need to scan for tombstoned weak slots. An ephemeron’s
first non-indexed field, called its key, is treated as a special case by
the garbage collector. For the present discussion, it shall suffice to
assume a garbage collector can detect when an ephemeron’s key is
only referenced by its corresponding ephemeron!. When this con-
dition is detected, the garbage collector marks the ephemeron as
inactive (by turning it into a regular strongly referencing object),
and queues the ephemeron for finalization. Ephemerons queued for

! As per [2] and the author’s HPS experience, ephemeron semantic edge
cases arising from transitive closure considerations can be complex and
ambiguous at best.

finalization are said to have been triggered — that is, ephemerons
are designed to perform finalization once. Critically, triggered
ephemeron keys are not tombstoned. Instead, all the information
necessary for finalization is still available at the time an ephemeron
mourns. Consequently, ephemerons do not need to duplicate data
from their keys to perform finalization.

Other systems implement roughly equivalent finalization strate-
gies falling into the preceding two levels of storage granularity [3].

2.2 Dynamic reference strength

The GemStone/S system is a full Smalltalk implementation that
can also function as an object database [4]. When GemStone/S is
used as a repository, other Smalltalk systems deploy client software
to transactionally exchange objects with the GemStone/S server.
GemStone/S repositories typically grow to hundreds of gigabytes
in size. The sheer volume of data demands extremely high perfor-
mance from the Smalltalk clients. For the purposes of this paper,
these performance requirements specifically mandate tight client
and server synchronization with regards to which server objects are
still referenced by the clients. Consequently, client systems must be
able to detect when the application no longer references the local
counterparts of objects persisted on the GemStone/S server.

An obvious approach is to let finalization drive the client server
synchronization. Due to object volume, using ephemerons for this
purpose is impractical. Each ephemeron would impose significant
memory overhead for each and every persisted object: an object
header for the ephemeron, and at least one field for the ephemeron
to reference the persisted object. Since most objects are compara-
tively small®, the ephemeron induced overhead is significant rel-
ative to the underlying persistent objects’ size. In addition, the
memory manager system on the client side would have to be en-
gineered to handle potentially millions of triggered ephemerons at
a time. These amounts are well outside the design envelope for
ephemerons. Moreover, triggering millions of identical finaliza-
tion actions individually is inefficient. Consequently, GemStone/S
clients hold on to persisted objects using weak arrays.

With this configuration, a performance issue arises because au-
tomatic garbage collection may untimely place tombstones in the
GemStone/S client’s weak arrays. Concretely, object transaction
processing is far more efficient when the weak arrays can be as-
sumed to have no tombstones for the duration of the transaction.
However, the client system may be forced to address a low memory
condition by invoking the garbage collector at any time. While cop-
ing strategies exist, eventually the alternative to unwanted tomb-
stones will be a system crash. Thus, entirely disabling the garbage
collector to prevent tombstones is unfeasible.

At first glance, it appears strong copies of the client’s weak ar-
rays must be made during transaction processing to keep the weak
arrays tombstone-free. This copying can require significant time,
create voluminous amounts of garbage, and might be impossible
due to lack of memory. In short, copying the weak arrays into strong
arrays is generally incompatible with reliability and high transac-
tion throughput. The alternative, tolerating weak array tombstones
at arbitrary times, is just as unsatisfactory from a performance per-
spective.

To address this problem, the author extended and improved the
HPS memory manager to allow dynamically adjusting a weak ar-
ray’s weak slot reference strength. In other words, applications
were given the ability to make a weak array’s weak slots start be-
having as strong references. Just as importantly, previously weak
and now strong arrays could be made weak again. This functional-
ity was implemented in general fashion, allowing changes in weak-

2 This phenomenon is generally due to arguments analogous to those relying
on Zipf’s Law.

ness for weak arrays, changes in ephemerality for ephemerons,
dynamic object class changes, as well as one-way and two-way
Smalltalk become operations’. Most of the necessary changes in-
volved HPS’ incremental garbage collector, because any of these
dynamic operations can easily invalidate the collector’s incremental
mark stack, incremental weak list, and incremental ephemeron list.
These enhancements eliminated the need to copy the GemStone/S
client’s weak arrays into strong arrays. Instead, the client software
simply turns weak arrays into strong arrays during the times when
the appearance of tombstones is undesirable. This approach has
been in production for a number of years [9], and works without
apparent problems to the author’s knowledge [7].

Nevertheless, once weak array copying was made unnecessary,
a new issue became apparent. Weak array mourning still requires
scanning to find tombstoned slots, and the persistent object tables
can grow very large. Mourning became a significant time consum-
ing operation preventing higher transaction throughput. This pa-
per’s proposal is designed to address this specific scenario.

3. Problem statement

To summarize, the goal is to minimize the time needed to detect lo-
cal persistent object counterparts no longer referenced on the client
side of a GemStone/S client server interaction. Such objects are al-
ready detected by, and known to, the garbage collector. But, since
ephemerons are unsuitable for this application due to prohibitive
memory and processing overhead, the garbage collector has no
other efficient way to communicate that knowledge to the applica-
tion. As a result, there is significant inefficiency measured in terms
of linearly scanning for tombstones during weak array mourning.

Mitigation strategies might offer some relief, but are generally
insufficient. Consider for example breaking up the weak array ta-
bles into smaller table pages. This scheme might reduce the time
spent scanning for tombstones in exchange for modest memory
overhead due to the pages’ object headers. Unfortunately, accu-
rately predicting the weak table tombstoning pattern is impossible
and/or impractical. Consequently, the added table page complexity
will only be amortized when the tombstoning rate is low. Never-
theless, even with a low tombstoning rate, the resulting table page
mourning rate may be high especially when the weak persistent
object tables are large. Faster linear tombstone scanning (perhaps
using primitives) may offer limited relief, yet the underlying algo-
rithm is still linear search. Finally, in a typical generational scav-
enger scheme, weak arrays could be queued for finalization with a
frequency proportional to that of scavenges.

These limitations suggest a different finalization mechanism is
needed.

4. Proposed approach

The critical observation is that the typical weak array mourning im-
plementation is inherently inefficient. Scanning for tombstones will
reconstruct information that was available during garbage collec-
tion. The root cause of this inefficiency is that the garbage collector
does not record which weak array slots were tombstoned. Hence,
the proposal is that small integers other than zero are used to tomb-
stone weak array slots. Specifically, these tombstones shall encode
a linked list of tombstoned weak slot indexes terminated with the
index zero. The linked list’s first index shall be recorded in the first
non-indexed field of the weak array. These special types of weak
arrays will be called linked weak arrays.

3 A one-way become replaces all references to object a with references to
object b. A two-way become exchanges references to a and b. Object class
pointers are usually unmodified by become operations.

For example, suppose a linked weak array with six indexed
slots is tombstoned at indexes 2 and 5. After the garbage collector
runs, the linked weak array shall be left as follows (recall Smalltalk
indexed slots are 1-based):

[2 [other non-indexedfields [? [5[?[?[0] 7]

The tombstone linked list evidently eliminates the need to scan
for tombstones during mourning. Moreover, it is hard to envision
a more compact encoding. Enhancing a garbage collector to tomb-
stone weak slots this way is trivial. Typical C memory manager
implementations would need to change a loop such as

idxSlotArray = idxSlotsPtr(weakArray);
for (k = 0; k < numIdxSlots(weakArray); k++)
if (!lisMarked(idxSlotArray([k]))
idxSlotArray[k] = asSmallInt(0);

to the following:

nextLinkedListWrite = fieldsPtr(weakArray);
idxSlotArray = idxSlotsPtr(weakArray);
for (k = 0; k < numIdxSlots(weakArray); k++)
if (lisMarked(idxSlotArray([k])) {
*nextLinkedWrite = asSmallInt (k) ;
nextLinkedWrite = idxSlotArray + k;
}
xnextLinkedWrite = asSmallInt(0);

Modifications along the lines of the above illustration ought to have
negligible impact on a memory manager’s performance.

So far, linked weak arrays have a lot in common with traditional
weak arrays. Nonetheless, in some memory manager systems, the
garbage collector may be invoked between the time a weak array
is placed in the finalization queue and the time the weak array
is done mourning*. Depending on the code executed within this
time window, additional slots may be tombstoned in the weak ar-
ray. This condition is not exceedingly problematic for traditional
weak arrays. However, the tombstone linked list encoding is vul-
nerable to race conditions. Explicitly preventing all variants of this
phenomenon with e.g. mutexes is deemed too onerous in practice.
Therefore, it appears linked weak arrays queued for finalization
must mourn between every single garbage collection tombstoning
pass.

Fortunately, there is an elegant way to address these data races.
When the garbage collector triggers an ephemeron and places it
in the finalization queue, it also turns the ephemeron into a regu-
lar strongly referencing object. Linked weak array race conditions
can be avoided by adopting the ephemeron finalization convention.
When the garbage collector places a linked weak array in the fi-
nalization queue, it will also change the linked weak array’s ob-
ject header flags to match those of a regular strong array. The now
strong array can be made a linked weak array again by the mourn-
ing procedure, after tombstone processing is complete. In this way,
linked weak arrays can be seen as a hybrid between existing weak
arrays and ephemerons. This approach requires dynamic reference
strength management facilities, such as those implemented for HPS
and described in the previous section [9].

A flexible, robust implementation should dedicate sufficient ob-
ject header garbage collection bits to differentiate linked weak array
semantics from that of regular strong objects, traditional weak ar-
rays, and ephemerons. These header bits enable the dynamic object
strength change operations on any suitable object, not just the in-
stances of a few special classes. In addition, clearly distinguishing

4 For instance, responding to a critically low memory condition should pre-
empt finalization, and addressing a memory emergency typically requires
invoking the garbage collector.

semantics in this way enables existing application code to continue
working as expected without modification.

Although the garbage collector may tombstone weak indexed
slots with small integers, nothing in this proposal prevents a linked
weak array from storing small integers. The tombstone linked list
begins at a non-indexed field, so there can be no confusion between
newly tombstoned slots and already present small integers.

It might be argued that the tombstone linked list exposes in-
ternal memory manager implementation details. However, linked
weak arrays do not break encapsulation any more than weak arrays
and ephemerons already do. Specifically, the tombstone linked list
could be derived for regular weak arrays during mourning, using no
additional information from the memory manager. Simply put, this
proposal’s argument is strictly one of convenience and efficiency.

5. Performance measurements

Linked weak arrays have not been implemented by the author at
the time of this writing. Notwithstanding, the limited nature of the
required memory manager changes greatly facilitates verifying the
expected mourning performance improvement due to linked weak
arrays. For example, in Cuis Smalltalk [5] running on Cog [6], it
is simple to construct a linked weak array simulation. The class
WeakArray might implement these two methods:

WeakArray>>mourn
1 to: self size do:
[:each |
(self at: each) ==
ifTrue: [self mournAt: each]

WeakArray>>mournAt: anIndex
"Token least possible mourning cost"
“self

The WeakArray subclass LinkedWeakArray might refine mourn
as shown below. In the code, firstTombstoneIndex is an acces-
sor for the first LinkedWeakArray instance variable.

LinkedWeakArray>>mourn

| nextIndex |
nextIndex := self firstTombstoneIlndex.
[nextIndex == 0] whileFalse:

L

self mournAt: nextIndex.
nextIndex := self at: nextIndex

]

The measurements compare mourn execution time spent in a
variety of equivalent regular and linked weak arrays. The different
array sizes and tombstone rates for the test were chosen as follows:

sizes := OrderedCollection with: 1.
8 timesRepeat: [sizes add: sizes last * 2].
6 timesRepeat: [sizes add: sizes last * 4].

rates := OrderedCollection with: 1.
[rates last > sizes last] whileFalse:
[
lastCount := sizes last // rates last.
newRate := rates last.
[sizes last // newRate = lastCount]
whileTrue:

[newRate := newRate + 1 *x 5 // 4].
rates add: newRate
1.

rates removelast

The work of the memory manager was simulated thus:

WeakArray>>tombstoneEvery: aRate
| thisIndex maxIndex |
self atAllPut: nil.
thisIndex := 1.

maxIndex := self index + 1.
[thisIndex < maxIndex] whileTrue:
L

self at: thisIndex truncated put: O.
thisIndex := thisIndex + aRate

LinkedWeakArray>>tombstoneEvery: aRate
| thisIndex maxIndex lastLinkIndex |
self atAllPut: nil.
lastLinkIndex := 0.
thisIndex := 1.
maxIndex := self index + 1.
[thisIndex < maxIndex] whileTrue:

[
| writeIndex |
writeIndex := thisIndex truncated.
self
tombstoneAt: lastLinkIndex
put: writeIndex.

lastLinkIndex := writeIndex.
thisIndex := thisIndex + aRate
1.
self tombstoneAt: lastLinkIndex put: O
LinkedWeakArray>>
tombstoneAt: anIndex
put: link

anIndex = 0
ifTrue: [self firstTombstoneIndex: link]
ifFalse: [self at: anIndex put: link]

Note higher tombstone rates indicate less slots are tombstoned, and
that a tombstone rate of 1 implies every slot is tombstoned.

For each array size and tombstone rate, equivalent regular and
linked weak arrays were prepared using tombstoneEvery:. Then,
sufficient mourn iterations were perforned so that each measure-
ment loop took at least one second. Finally, a quotient between the
average mourn execution time for regular and linked weak arrays
was derived. If this quotient is exactly 1, this means that regular
and linked weak array mourning run just as quickly. If the quotient
is greater than 1, linked weak array mourning is faster by a factor
equal to the quotient. That is, if the quotient is 3, this means linked
weak array mourning was three times faster than regular weak ar-
ray mourning given a certain array size and tombstone rate. In this
context, saying something is = times faster means it will complete
z times as many iterations within the same time. This quotient was
calculated for all pairs of array sizes and tombstone rates.

Generally, linked weak arrays mourned faster than regular weak
arrays in linear proportion to the array size and tombstone rate.
Surprisingly, linked weak array mourning was at least 30% faster
in every case, even for arrays of size 1 and for arrays tombstoned at
every index. The entire quotient result set is shown in the appendix.

6. Additional benefits, further work

The information written by the garbage collector can be used to
achieve further improvements. For example, tombstoned weak ar-
ray slots are usually recycled by the application. Without linked
weak arrays, finding tombstoned slots to reuse requires work. With

linked weak arrays, however, this housekeeping is simplified. Dur-
ing mourning, the linked list written by the garbage collector can be
easily appended to a free slot list (or list of free slot lists) rooted in
a suitable non-indexable field. This arrangement avoids the need
to linearly scan for a tombstoned slot in the presence of differ-
ent tombstone objects. Weak array non-indexed fields’ reference
strength is typically strong, making them well suited to holding on
to structures that must persist across tombstoning events.

Consider what happens when the garbage collector is invoked
after a traditional weak array is placed in the finalization queue. It
might occur that additional weak array weak slots are tombstoned
by this subsequent garbage collector pass. By the time the weak
array mourns, whether the tombstones were placed by one or sev-
eral garbage collection passes will be irrelevant for the purposes
of mourning. But what if the second garbage collection pass takes
place while the weak array is mourning? The unexpected additional
tombstones could introduce data races in the mourning process, and
accounting for this possibility makes robust mourning implementa-
tions more difficult to construct. In practice, weak array mourning
is implemented to tolerate so-called double mourning, potentially
at great computational cost. However, linked weak arrays do not
suffer from these problems. Linked weak array referents will be
referenced strongly until mourning determines it is safe to make
the linked weak array slots weak again. Thus, whether traditional
weak arrays should also adopt the ephemeron finalization conven-
tion merits consideration.

Although the present work was specifically designed to improve
GemStone/S performance, the proposed solution is applicable to
other problem domains. For instance, efficient Smalltalk symbol
tables are typically implemented in terms of hash bucketed sets,
where each hash bucket is a weak array. Interning new symbols
requires finding available indexed slots in a hash bucket, that is,
scanning for tombstones. An efficient symbol table implemented
with linked weak array hash buckets would enable higher symbol
internment throughput.

7. Related work

Although VA Smalltalk [8] tombstones weak array slots with nil,
its finalization queue stores triplets consisting of a weak array in-
stance, the slot index at which said weak array was tombstoned,
and the slot’s contents prior to tombstoning. Note how the final-
ization queue introduces a strong reference to previously weakly
held objects that would have been collected otherwise. This is un-
like other Smalltalk weak array implementations, as well as linked
weak arrays, in which tombstones indicate the previously weakly
held objects have been garbage collected®. Instead, EsWeakArray
implements behavior characteristic of ephemerons.

The finalization approach of VA Smalltalk prevents scanning for
tombstones at the expense of significantly higher memory utiliza-
tion. Under pressure, a finalization queue up to three times as large
as all EsWeakArray instances combined may be required. If the
finalization queue overflows, thorough system finalization requires
multiple garbage collection passes. Even scanning for tombstones
would be almost certainly preferable to additional garbage collec-
tion activity. Bulk EsWeakArray finalization incurs comparatively
larger overhead because tombstoned slots are handled one at a time.
Arguably, in high volume finalization scenarios, there will be nu-
merous finalization triplets for a given weak array instance. In those
cases, the triplets’ redundant encoding requires a finalization queue
much larger than necessary.

In VA Smalltalk, linked weak arrays would be more efficient
at handling combined memory and performance pressure scenarios

5 Tombstoned data that has also been collected cannot be resurrected e.g.:
by sending allInstances.

where EsWeakArray’s ephemeron-like semantics are unneeded. At
worst, the finalization queue would only need to hold linked weak
array instances, as opposed to triplets for every weak array slot.
Hence, finalization queue overflows and multiple garbage collec-
tion passes would become a mostly theoretical concern. In contrast
with VA Smalltalk’s finalization queue triplets, linked weak arrays
would need just a single non-indexed field per array. This fixed cost
can be amortized easily by increasing array sizes. Linked weak ar-
rays’ more compact representation would lessen memory pressure,
presumably reducing garbage collection activity. Bulk linked weak
array finalization has minimal processing overhead in part because,
unlike VA Smalltalk finalization, each linked weak array processes
all its tombstoned slots as a group. For example, VA Smalltalk fi-
nalization requires at least three at: sends per tombstoned slot,
while linked weak array finalization would only need one at : send
per tombstoned slot. Finally, while a linked list of tombstoned slots
could be constructed with moderate effort using VA Smalltalk’s
finalization queue triplets, linked weak arrays would provide that
data structure at virtually zero cost.

8. Conclusions

Weak arrays and ephemerons are insufficient to address certain us-
age scenarios that simultaneously demand memory and execution
efficiency. Specifically, when memory pressure forces the use of
regular weak arrays, scanning for tombstoned slots can become
an unavoidable time sink. The root cause of this inefficiency is
that traditional garbage collector design discards critical informa-
tion, forcing mourning to reconstruct this data. This paper proposes
that the garbage collector encodes a linked list of tombstoned slots
in objects with special garbage collection semantics called linked
weak arrays. Linked weak arrays are a hybrid between weak arrays
and ephemerons. With this approach, memory efficiency is pre-
served and tombstone scanning is eliminated. Implementing this
functionality without introducing data races is greatly facilitated
by a memory manager with dynamic reference strength manage-
ment capabilities, such as the one implemented in HPS. In addi-
tion, in the author’s opinion, enough object header bits should be
reserved to identify the garbage collector semantics required for
each object: strong object, (untriggered) ephemeron, weak array,
and linked weak array. Two bits should suffice for this purpose.
Other memory management race problems such as double mourn-
ing can be addressed by the same mechanism. Finally, it should
be noted even the most trivial weak array mourning cases perform
better with linked weak arrays than with traditional weak arrays.

Acknowledgments

The author wishes to thank Martin McClure of GemTalk Systems
for years of productive, positive collaboration.

References

[1] L. Peter Deutsch, Allan M. Schiffman. 1984. Efficient im-
plementation of the Smalltalk-80 system. In POPL ’84 Pro-
ceedings of the 11th ACM SIGACT-SIGPLAN sympo-
sium on Principles of programming languages. ACM, New
York, NY, USA, 297-302. DOI=10.1145/800017.800542,
http://dx.doi.org/10.1145/800017.800542.

[2] B. Hayes. 1997. Ephemerons: a new finalization mecha-
nism. In Proceedings of the 12th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and ap-
plications (OOPSLA ’97), A. Michael Berman (Ed.). ACM,
New York, NY, USA, 176-183. DOI=10.1145/263698.263733,
http://doi.acm.org/10.1145/263698.263733.

[3] R. Jones, A. Hosking, E. Moss. 2012. The Garbage Collection
Handbook. CRC Press. ISBN: 978-1-4200-8279-1.

[4] GemTalk Systems, Inc. http://www.gemtalksystems.com.

[5] Cuis Smalltalk, by Juan Vuletich et al. http://www.jvuletich.org/Cuis.

[6] Cog VM, by Eliot Miranda et al, version 4.0.3164.
http://www.mirandabanda.org.

[7] Martin McClure, personal communication.

[8] Instantiations, Inc. http://www.instantiations.com/products/vasmalltalk.

[9] A. Valloud. Object Memory Management, presented at the Smalltalks
2010 conference with subsequent updates at the ESUG 2011 and STIC

2012 conferences. See http://www.fast.org.ar, http://www.esug.org, and
http://www.stic.org.

A. Performance measurement results

The below table lists all performance quotients between linked and regular weak array mourning times for every array size and tombstone rate
pair. Quotients greater than 1 indicate linked weak array mourning is faster than traditional weak array mourning. Each column corresponds
to an array size, and each row shows quotients for a particular rate. Some pair quotients are blank because tombstone rates higher than the
array size do not provide additional information — recall a rate of e.g. 10 means that one in every ten slots is tombstoned. As indicated
earlier, these figures compare the efficiency of the least required mourning work. These tests were performed on the Cog VM [6], running on
an Intel 17-4850HQ CPU at a base frequency of 2.3 GHz.

Rate / Size 20 2 22 23 24 25 26 27 28 210 212 214 216 218 220
T | 133 | 1.35 | 1.32 | 1.33 | 1.26 1.30 1.29 1.29 1.30 T.31 1.29 1.30 1.29 T.27 1.29

2 1.75 | 1.96 | 2.14 | 2.42 2.20 2.29 2.34 2.37 2.38 2.39 2.39 2.37 2.36 2.34

3 1.89 | 2.53 | 2.99 3.23 3.05 3.19 3.33 3.40 3.38 3.38 3.39 3.34 3.38

5 3.24 | 3.93 1.63 4.27 4.98 5.19 5.42 5.58 5.56 5.45 5.36 5.45

7 3.25 | 4.45 .00 .38 6.44 7.03 7.43 751 7.66 757 7.35 7.36

10 5.79 7.17 8.63 8.21 9.59 10.37 10.55 10.69 10.55 10.40 10.34

13 6.31 9.33 | 12.21 | 13.46 | 13.35 14.94 15.15 15.49 15.49 14.98 15.17

17 12.12 | 14.64 | 16.04 | 15.80 18.68 19.61 19.71 19.54 19.37 19.40

22 11.43 | 17.12 | 19.99 | 19.75 23.48 24.45 24.73 24.57 24.02 23.73

28 11.36 | 17.07 | 22.89 | 25.38 28.56 30.80 30.63 30.51 29.78 29.04

36 21.92 | 26.83 | 30.90 34.85 38.62 39.33 39.02 29.01 33.05

46 22.01 | 32.62 | 38.09 42.75 47.88 49.65 48.98 31.76 36.64

58 21.66 | 32.41 | 43.68 52.81 59.18 61.39 61.18 39.24 1171

73 42.25 | 51.65 60.03 72.95 76.75 76.55 55.01 54.52

92 42.17 | 63.09 73.38 91.03 95.58 95.26 89.13 59.37

116 42.43 | 63.23 | 105.15 110.47 118.52 122.46 111.15 68.52
146 $3.46 | 114.89 135.93 148.47 150.20 T42.95 103.49
183 82.53 | 147.00 166.60 185.74 183.60 185.64 114.37
230 82.62 | 170.53 202.78 230.33 324.01 234.85 155.12
288 202.27 235.29 282.41 291.46 283.17 171.90
361 244.53 293.27 346.58 367.79 338.45 243.45
452 248.57 377.57 429.68 453.43 421.43 366.35
566 331.35 458.59 535.39 556.52 563.34 484.58
708 325.71 579.33 623.43 692.63 707.53 604.44
586 324.45 672.51 764.24 §69.92 $83.08 682.49
1108 798.45 923.78 1057.44 1098.15 855.86
1386 980.43 | 1147.28 1303.74 1357.69 1074.08
1733 984.20 | 1497.25 1627.28 1447.08 1357.68
2167 1307.36 | 1816.96 1979.58 2114.06 1993.21
2710 1314.82 | 2039.99 2331.37 2611.88 2723.40
3388 1315.70 | 2664.39 2945.72 3225.89 3326.48
4236 3178.02 3485.84 4027.84 4177.18
5296 3173.84 3907.71 1979.14 5200.80
6621 4031.03 5931.98 6139.07 6405.03
8277 5166.64 7226.23 7487.76 8107.55
10347 5163.30 8102.75 9029.40 9913.28
12935 5204.57 9134.19 | 11043.90 12288.00
16170 5163.47 | 10699.07 | 13136.72 15396.71
20213 12628.30 | 15522.34 18901.09
25267 15707.99 | 21505.62 23183.31
31585 15601.48 | 25675.80 27986.01
39482 20646.77 | 31698.65 34897.23
49353 20821.33 | 35986.80 41275.72
61692 20694.73 | 41735.20 52252.24
77116 29551.61 60535.85
96396 61055.33 86784.40
120496 61344.46 | 102330.31
150621 80609.93 | 124014.28
188277 §1332.53 | 144179.20
235347 81314.40 | 164802.79
204185 200226.55
367732 244799.13
574583 324609.02

