
Live Introspection of Target-Agnostic JIT in Simulation

Boris Shingarov
shingarov@labware.com

Abstract
A debugging system is described wherein an outer Smalltalk
running on a real machine interacts with a GEM5 simu-
lation of an inner Smalltalk. An experimental embodiment
is applied towards understanding the behavior of a target-
agnostic JIT prototype.

Categories and Subject Descriptors D.3.4 [Programming
languages]: Processors

Keywords Smalltalk Virtual Machine, Liveness, Full-System
Simulation, GEM5, Retargetable Compiler, Unification,
GDB Remote Serial Protocol, Processor Description Lan-
guage

1. Introduction
The traditional software observation approaches are increas-
ingly proving inadequate as tools for understanding the ever
more complex behavior of modern software. On the one
hand, the conventional debugging techniques [34] are inef-
fective at explaining such classes of intricate effects as e.g.
race conditions in a multicore system.

On the other hand, understanding correctness is only one
side of the challenge; the other side is performance. Raw
execution speed (as exemplified by “bytecodes/second” and
”sends/second” metrics for a Smalltalk VM) is no longer the
key performance metric, since energy consumption and heat
constraints are becoming more important limiting factors. In
addition, an optimization leading to an improvement in one
application workload, can cause a deterioration in another,
so there is no single measure of “code quality”. Moreover,
the desire for higher quality dynamically generated machine
instructions must be balanced against the efficiency of the
generator itself. This is so because in a dynamically trans-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IWST ’15, July 15, 2015, Brescia, Italy.
Copyright is held by the owner/author(s).
ACM .
http://dx.doi.org/10.1145/

lated runtime, the JIT translator and the code it generates
compete for the same computational resources.

The complexity of contemporary state-of-the-art VMs is
further increased by explicit michroarchitectural considera-
tions (cf. the cache-awareness optimizations in a Java VM
in [9]). Because of these challenges, the decisions related to
the fine-tuning of the translator back-end can no longer be
founded on the compiler expert’s intuition about optimiza-
tion strategies, but must be supported by measurement —
possibly even at run-time by the JIT itself [4, 36]. More-
over, this measurement of these heavily microarchitecture-
dependent effects will be specific to each realization of a
given ISA by a particular system implementation (includ-
ing the particular CPU core, cache implememtation, phys-
ical semiconductor embodiment by the chip manufacturer,
etc.)

Simulated virtual platforms [23] are attracting increasing
interest from both academia and industry because of their
potential to help solve these problems. Full-system simula-
tors such as Simics [1, 24, 25, 27] and GEM5 [10, 12, 18, 19,
23, 25, 35] have proven their effectiveness in applications to
research and industrial problems such as debugging operat-
ing systems and hypervisors, understanding intricate defects
in microprocessor design, and explaining unexpected energy
consumption patterns in embedded systems, to name a few.

This paper describes an experiment in which virtual plat-
form simulation using the open-source GEM5 system was
applied to gain insight into the behavior of a new JIT trans-
lator for Smalltalk.

2. The Debugee JIT
The need for a new simulation-based observation tool grew
from the practical requirement to understand the behavior of
a prototype of an automatically-retargetable (a.k.a. “target-
agnostic”) JIT translator. Although that target-agnostic trans-
lator has been described elsewhere [38, 39], a quick recapit-
ulation of its function will promote a better understanding of
the driving forces behind the design of the simulation-based
debugger which is the main subject of this paper.

2.1 Automatically-Retargetable Code Generation
The Target-Agnostic JIT is a Smalltalk v-code-to-n-code
[15] translator backend with no knowledge of the target

Figure 1. Overall Structure of the “Target-Agnostic JIT” Experiment

processor architecture coded in. It acquires target awareness
at run-time by processing a formal specification of the target
ISA written in a Processor Description Language (PDL) [17,
26, 31, 42] called ArchC [6]. Because the ArchC language
is mostly oriented towards simulator generation, as opposed
to machine reasoning about the ISA semantics which is
essential for hardware synthesis and compiler derivation,
the ISA semantics are extracted from a second specification
written in the ACCGen language [5]. The Smalltalk JIT
does not use any part of the ArchC nor ACCGen software,
other than the language itself, and the specifications for four
popular processor architectures.

If any PDL is to be useful for automatic code generator
derivation, it must specify the following information about
the target [13]: (1) the registers representing the processor
state (General-Purpose Registers (GPR), Special-Purpose or
Reserved Registers such as the Program Counter, condition
flags, etc.); (2) addressing modes; (3) instruction encodings,
(4) data types, and (5) machine operations, assigning each
machine instruction a cost and a semantic definition. The
following is an example of ACCGen semantic definition:

define instruction addu semantic as (

(transfer Op1:GPR (+ Op2:GPR Op3:GPR));

) cost 1;

These semantic statements essentially define a function
from instructions to primitive fragments of the semantic
effect tree (called “I/O assertions” in [13]); however, they
provide no computational recipe for going in the opposite
direction — i.e., from effects to instructions. This can be
represented by the following equation:

SJ = T (1)

where J is an instruction, T is its corresponding I/O asser-
tion, and S is the “semantic operator”; each instance of S
(such as, SSPARCv8 or SMIPS−I) contains the whole plu-
rality of instruction semantics for the given ISA. The task of
code generation is to solve the inverse problem for (1), i.e.
to determine J given S and T . This solution has to exhibit a
number of obvious general properties, such as computability
(the function has to be total over all IR inputs, i.e. terminate
in finite time producing either a J or a proof that SJ 6= T∀J)

and confluence (the function value has to be independent of
the particular computation strategy chosen by the evaluator).

2.2 Unification
A target-specific translator backend benefits from human-
programmed heuristic strategies for inverting the semantic
operator S. In an automatically-retargetable backend, S is
not known ahead of time. It is given by the processor de-
scription:

PDL
parse−−−→ S.

However, merely parsing the PDL does not give us S−1. In
order to generate code, we need a general method for solving
equation (1).

Because S, J and T don’t seem to have any immediately
recognizable algebraic structure, the only mathematical the-
ory directly applying to (1) seems to be unification, which
concerns itself with the study of equations as such. Indeed,
a simple equational-theoretic argument yields a short and el-
egant program for computing S−1. The idea is the same as
that of the basic word-problem algorithm of Knuth–Bendix
[21]. Let’s start with a simple example. (Because Prolog is
probably the most widely known language for logic pro-
gramming, let’s use that language to express the rewriting
program).

2.3 Instruction Semantics Rewriting
Consider the PowerPC instruction addiu RD, RA, D. Here
RD and RA are 5-bit-wide GPR numbers, and D is a 16-bit-
wide immediate constant. This instruction adds the unsigned
immediate constant D to the contents of register RA, and the
result is stored in register RD. It follows the usual register-
instruction “RA-convention” that if RA is registered to r0,
then zero is used instead of the contents of r0.
Here is the ACCGen definition for addiu:

define instruction addiu semantic as (

let Op2 = "0" in

(transfer Op1:GPR imm:Op3:tgtimm);

) cost 1;

define instruction addiu semantic as (

(transfer Op1:GPR (+ Op2:GPR imm:Op3:tgtimm));

) cost 1;

The parser for the ACCGen grammar can trivially transform
these (and any number of other) definitions into a Prolog
clause string:

transfer(Op1,Op3) => addi(Op1,Op2,Op3) :-

Op2 = 0,

integer(Op3), Op3 < 65536,

true.

transfer(Op1,+(Op2,Op3)) => addi(Op1,Op2,Op3) :-

integer(Op3), Op3 < 65536,

true.

Each of these axioms can be seen as a conditional rewrite
[8]. The operator “=>” here has no special significance; it is
simply the functor “=>/2” in infix form:

op(500, xfx, =>).

A program to invert S combines any number of these in-
struction semantics definitions with the Cheng–van Emden–
Parker’s equation axioms [14, 32]:

e(X,Y) :- e2(X,Y).

e2(X,Z) :- e1(X,Y), e2(Y,Z).

e2(X,X).

e1(X,Y) :- X => Y.

The above four lines turn the logic interpreter into a rewrite
machine.
We also need the following left- and right-substitutivity ax-
ioms:

e1(transfer(A1,B), transfer(A2,B)) :- e1(A1,A2).

e1(transfer(A,B1), transfer(A,B2)) :- e1(B1,B2).

Already this tiny program is sufficient to emit some code:

:- e(transfer(gpr(2), 5), J).

J = addi(gpr(2), 0, 5).

What happens if the constant does not fit in the immediate
operand field?

:- e(transfer(gpr(2), 500000), J).

false.

This is because we still have to define the semantic equiv-
alence properties of the abstract I/O effects. These specify
the valid IR tree transformations which can be applied with-
out changing the semantics of the program. For example, it
is possible to store an intermediate computation result in a
scratch register; this can be programmed as the following
rewrite axiom:

transfer(A,C) => [Y,X] :-

e(transfer(A,B), X),

e(transfer(B,C), Y).

Many of these semantic equivalence axioms take us out
of pure symbolic processing into meaning domains such as
arithmetic. In the example above, the generator failed to emit
a synthetic immediate constant because it had no notion of
decomposition of integers into the result of an arithmetic op-
eration over smaller-width integers. The Prolog clauses ex-
pressing such axioms will contain arithmetic predicates such
as “is”, “==/==” etc., triggering arithmetic computations as
opposed to pure logical unification. For example, the mean-
ing of “left shift” can be expressed thus:

transfer(Rd, V << S) => [X,Y] :-

integer(V), integer(S),

e(transfer(Rtmp,V), X),

e(transfer(Rd,shl(Rtmp,S)),Y).

Such semantic equivalence axioms operate at the level
of the abstract IR tree and not of the machine instruc-
tions. (They are the machine-independent part of S, and
programmed only once.) Even if we decide to aid the gen-
erator by providing a heuristic hint, (favoring a particular
shift amount for decomposition based on the immediate field
width):

transfer(R,Imm) => transfer(R, Hi \/ Lo) :-

integer(Imm),

Hi is (Imm /\ 0xFFFF0000),

Lo is (Imm /\ 0x0000FFFF).

where the 0x0000FFFF and 0xFFFF0000 masks are pre-
computed from the

redefine operand tgtimm size to 16;

statement of the ACCGen description at parse time, the
translator is still machine-invariant, all such information be-
ing parametrized by the PDL.

Upon adding similar transliterations of the ACCGen def-
initions for “or” and “shift”, our program is now complete
enough to emit combinations of register loads and or’s of
any size:

:- e(transfer(gpr(2), 500000), J).

J = [[addiu(_G2323, 0, 7),

instr_shl(_G2321, _G2323, 16)],

addiu(_G2322, 0, 41248),

ore(gpr(2),_G2321), _G2322))].

(Actually, the definition for shift is slightly more involved
because on the PowerPC the left shift needs to be expressed
in terms of rotate, but this does not change the operation of
the rewriter).

2.4 Bootstrapping the VM
The simple code generator described above, exhibits some
interesting properties. Notably, in the answer from e/2

which we obtained in the previous section, J is not fully
grounded. On the trivial level, this means that we have only
performed instruction selection but not register allocation.
On a much deeper level, the algorithm is capable of perform-
ing narrowing as opposed to mere reduction. This opens
some interesting possibilities.

The dynamic nature of the JIT, namely the fact that it
competes with the mutator for processor cycles, makes trans-
lation speed a critical component of the overall performance
of the VM. Cattell [13] factorizes the translator into a code
generator and a code generator generator, therefore distin-
guishing between a machine description and a machine ta-
ble. In essence, a machine table is a pre-computed S−1. The
ability of the rewriter to perform narrowing, means that it is
not necessary to do a full rewrite for every concrete T . In-
deed, if J can be partially grounded (or, in Knuth–Bendix
terminology [21], an “impure word”), then T can be too.

Combined with the ability of certain Prolog implementations
(such as SWI-Prolog) to compile logic programs into native
binary, this can mean getting the ability to save S−1 into a
native object format (such as .so) essentially for free effort-
wise. Choosing a bootstrapping strategy becomes a matter
of programming. In general, this JIT does not aim to be
Slang-transliterated into C for execution. It can be encap-
sulated in a native object format using a Prolog compiler, or,
if reliance on an external compilation tool is undesirable, —
such as in the context of trustworthy computing where for-
mal set-theoretic or first-order-logic proofs are mandatory
— it can start from a running full Smalltalk in the first phase
of boorstrapping. How much is synthesized within that out-
ermost Smalltalk, can vary considerably: at one extreme, it
can be a short sequence of instructions (or even one instruc-
tion) representing the concretization of one abstract RTL in-
struction; at the other extreme, a complete base Smalltalk
system including the translator itself (and certainly every-
thing needed for the translator operation) is ahead-of-time
translated and can then be lauched as a second-generation
interactive environment. Application deployment is then re-
duced to a position somewhere in-between these extremes.

2.5 Smalltalk Embodiment
The JIT prototype built by the author for conducting these
experiments, consists of several components. A parser based
on the PetitParser framework parses the ArchC and ACCGen
processor descriptions arriving at a number of Smalltalk
objects:

AcProcessorDescription is the top-level processor de-
scription object containing structural information such as the
definitions of the machine’s primary memory, storage bases,
word sizes, as well as a collection of instruction encoding
format definitions and a collection of available instruction
definitions.

AcInstructionFormat represents an instruction format sche-
me. From a data representation point of view, it is a sequence
of bitfield name-to-width associations. From a code gener-
ation point of view, it is the least specific level of variable
binding: at this stage, only the family of binary instruction
encoding is known.

AcInstruction objects encapsulate name, assembly syntax,
encoding, and a forest of semantic trees with their costs.
From a variable binding point of view, only those fields
are bound that specify which instruction was selected (e.g.,
opcode), but not any operand fields; those are still unbound.

GroundedInstruction specifies the instruction fully, in-
cluding the values of all operands.

During the parsing of the ISA semantics specification,
rules about the ISA are assert’ed into the Prolog database.
The final result of parsing the processor specification is an
AcProcessorDescription object containing the Instruc-
tion Format and Instruction objects (representing “static”

Figure 2. GTInspector showing an AcProcessorDescription
In the middle is the Dictionary of machine instructions. The instruction addi is showing on the right, including the encoding
and the forest of two semantic trees; for each tree, we can see the ACCGen source, the Prolog rewriting rule, and the cost.

knowledge such as instruction encoding and mnemonics),
and the logic database representing the knowledge of seman-
tics. The actual instruction selection is achieved by matching
the IR tree against the logic rules using the standard Prolog
resolution engine as described above.

The result of the Prolog query is a list of fully grounded
terms; these are converted back into an Array of GroundedIn-
structions which are in turn #collect:’ed to yield the final
ByteArray of n-code.

These classes easily integrate with the Glamour tools to
facilitate exploration of the processor model. Figure 2 shows
one example where the GTInspector is open on an AcProces-
sorDescription instantiated by parsing the PowerPC ArchC
definition.

In his experiments conducted by the author so far, he
made no attempt to exploit the potential for higher code
quality offered by matching the entire IR tree. The size
of the instruction selection problem was strictly confined
to concretization of individual “Abstract RTL Instructions”
of the Cog translation framework. This is because the cur-
rent instruction selector suffers from a number of problems.
First, it performs depth-first search instead of dynamic-
programming factorization of the input tree. Although it
would be possible to implement the latter [11], the author
chose the former as the most general formalism to aid un-
derstanding the properties of target-agnostic instruction se-
lection. Therefore, the generator would quickly die of com-
binatorial explosion if confronted with a sizable IR input.
Second, at this time there is no register allocator: the code
simply takes as many scratch registers as there are interme-
diate results. For IR inputs representing Cog’s abstract RTL,
this just happens to fit in the modeled processors’ register
files. Third and perhaps worst of all, it does not take into
account weights (instruction costs) and there is no complete
proof of computability nor of confluence. While the gener-

ator appears to work on simple inputs, there are no funda-
mental guarantees that e.g. changing the order of instruction
definitions will not change the emitted instructions, or cause
the algorithm to not terminate altogether. Formulating such
complete guarantees is a direction for future work.

3. The Simulation-Oriented Debugger
To investigate the behavior of the generated n-code on the
various currently available targets, and with a view towards
future (possibly unconventional) targets, the author has de-
veloped a debugging system based on fully-controlled sim-
ulation of the target machine. The central element of this
system is the GEM5 simulator; however, the versatility of
the Remote Serial Protocol used to communicate between
the host Smalltalk and the container of the target, allows
for many other interesting options. For example, one could
use Simics [1] as the target simulation vehicle. Even more
intriguing possibilities are unlocked by having an RSP-
enabled scaffolding around a softcore running on reconfig-
urable silicon.

Unlike traditional tests in Smalltalk which run in a full
live Smalltalk system and therefore bring its full complexity
into every test, the new JTAG-boundary-scan-like introspec-
tion facility allows to partition the subsystem under test into
a factorization which can be understood in ways fundamen-
tally unattainable when observing a part interacting with a
whole system. The reason is that in general,even a micro-
scale subsystem can’t be described in deterministic mechan-
ical terms once it is a part of a non-deterministic macrosys-
tem.

3.1 The GEM5 Simulator
GEM5 is an open-source framework for discrete-event sim-
ulation of computer platforms primarily aimed at architec-
ture research [10, 12, 18, 19, 23, 25, 35]. It models many

processors and memory hierarchy organizations at various
levels of fidelity depending on which aspect of the proces-
sor the researcher is interested in studying, such as system
features below the architectural level, e.g. cycle-accurate
microarchitecture-faithful timing and/or energy consump-
tion.

3.2 Simulated Processor Workloads in GEM5
GEM5 is scripted in Python. Running the simulator com-
prises two phases. In the configuration phase, a system of
Python objects is instantiated which represents how the dif-
ferent elements provided by the framework are put together
into a complete computer system simulation. This is per-
formed by a Python script called the “Simulation Script”.
This hierarchy of objects is mirrored by a parallel hierarchy
of C++ objects. In the simulation phase, these C++ objects
are manipulated by the discrete-event simulation engine.

There are two example simulation scripts provided in the
GEM5 distribution which in many simple cases allow the
user to run simulations without having to write their own
simulation scripts. The pre-packaged “FS.py” script enables
full-system simulation of a complete unmodified operating
system. This script is sufficient for many scenarios of FSS-
debugging an OS kernel.

The other pre-packaged script, “SE.py”, allows the GEM5
user to model the execution of a userspace process in
Linux. The Python class LiveProcess, together with its
C++ counterpart, implement the concept of guest OS pro-
cess; this includes putting the CPU model into “syscall
emulation” mode which redirects the guest’s syscall inter-
rupts to the host, mapping guest memory to host memory
(since the SE mode replaces the MMU operation model),
etc. LiveProcess’s platform-specific subclasses encapsu-
late the knowledge of the ELF object code format and a few
other platform specifics. Figure 3 shows the LiveProcess

class hierarchy in standard GEM5.

3.3 The Modified SE Workload
The primary function of GEM5 in the presently described
experiment was to allow the investigation of the behavior of
code emitted by the target-agnostic JIT. To achieve this, a
new workload class was added to GEM5. Instead of read-
ing program text from ELF, establishing the environment
and setting the initial register values, such as the Program
Counter, it fills these values from data received from the
outer Smalltalk via the GDB Remote Serial Protocol. The
remaining aspects of its operation (e.g. file descriptor map-
ping) is similar to the operation of LiveProcess.

3.4 The GDB RSP Server in GEM5
GEM5 includes a GDB Remote Serial Protocol server to
which a standard GDB (configured for cross-debugging the
correct target architecture) can be attached to debug the
software running in simulation. This is different both from
debugging the simulator itself (which can be freely mixed

with debugging the guest) and from attaching to a debug
server that may be running inside simulation (the latter rarely
makes much sense as it negates the benefits of simulation
while serving the same purpose). The RSP server works the
same way regardless of the simulation script (e.g., SE.py or
FS.py) and of the SE/FS mode of the simulated CPU.

The RSP server provides access to the simulation within
the capability meant by the GDB RSP protocol, but mod-
ifying the GEM5 source so that the RSP server supports
functions not envisioned by GDB turns out to be relatively
straightforward.

3.5 Pharo RSP Client
As part of this experiment, the test harness for the new JIT
contains a Smalltalk RSP client comprising three layers.

Class RemoteGDBTransfer implements the RSP’s packet
transfer layer, approximately corresponding to Layer 6 of
the OSI model. It opens a TCP connection to GEM5 via
a Pharo Socket object. It then parses/synthesizes the RSP
packet frame structure such as the “$”/“#” delimiters, check-
sums, special symbol escaping, distinguishing between 7-
and 8-bit transfers, transmission of acknowledgements, and
server interrupts.

Class RemoteGDB implements the Application layer of
the RSP protocol (Layer 7 in OSI). The following is an
example of a G packet exchange used to transfer the state
of the processor’s storage bases to the debugger:
Pharo−→ GEM5:

$g#67

Pharo←− GEM5:

+
$00000000a6ffffbe00
00f0feffbe0000000050810000
1000
...
00#f9

Pharo−→ GEM5:

+

This exchange is invoked by sending #getRegisters to
a RemoteGDB. Other communications with the RSP server
are initiated in a similar way.

This application layer of RSP necessarily contains parts
specific not only to each ISA, but even to different proces-
sors within an ISA. For example, different processors in the
PowerPC family may or not have registers vr0–vr31 de-
pending on whether the particular chip implements the Al-
tiVec section of the Power ISA v2.03 spec. Accordingly, the
G-packet will or will not reserve positions for the transmis-
sion of vr0–vr31.

The ARchC/ACCGen PDL descriptions do not contain
such information. Fortunately, the implementation of this
part of the wire protocol by GDB is not completely hand-
coded, but parametrized by “processor feature” XML docu-
ments found under gdb/features within the GDB source.
(There are, however, pieces which are not part of the XML
but instead coded in C alongside the XML). The Pharo RSP

SimObject

Process

LiveProcess

ArmLiveProcess PowerLiveProcess SparcLiveProcess

Sparc32LiveProcess Sparc64LiveProcess

Sparc32LinuxProcess Sparc64LinuxProcess

ArmLiveProcess32 ArmLiveProcess64

ArmLinuxProcess32 ArmLinuxProcess64

PowerLinuxProcess

Figure 3. The LiveProcess Class Hierarchy

client uses PetitXml/PetitXPath to compute the processor’s
state bases wire transfer protocol from these feature descrip-
tions.

3.6 Simulation Exits
Once the segment of n-code to be tested as part of the
test suite is injected into the address space of the simu-
lated process, the simulator needs to perform a delimited
amount of simulation steps after which the resulting ma-
chine state can be verified. One approach to such delimit-
ing consists of counting the instructions being executed. For
certain processor models that take into account the details
of the pipeline operation, such simple counting is impossi-
ble altogether. One approach to solving this problem is to
use special markers through which the workload commu-
nicates with the simulator. Unfortunately, today’s common
ISAs are not designed with such software/processor commu-
nication as a goal. Therefore, a number of workarounds have
been widely used by the simulation community. For exam-
ple, Simics [1] resorts to “magic instructions” to mark spe-
cific points in the program text for the simulator to perform a
“magic breakpoint”. A magic instruction is an agreed-upon
instruction considered extremely unusual. For example, on
Intel i386, such an instruction is

xchg %bx, %bx

On SPARC,

sethi n, %g0

This device is only a workaround: on the one hand, it just
happens that a whole operating system such as Linux does
not contain the instruction, but there is no reason that a
program couldn’t contain this perfectly legal instruction; on
the other hand, the flexibility of magic instructions as a
software/simulator communication tool is limited.

The GEM5 SE mode uses the exit(2) syscall to termi-
nate the simulation. This can be viewed as a case of normal
execution: after all, this is the behavior of the unmodified
program running on the physical microprocessor. However
— in SE mode specifically — it can also be viewed as a case
of software/simulator interaction, because instead of model-
ing the operation of the trap mechanism in the microproces-
sor (as it does in the FS mode) upon encountering the syscall
interrupt instruction, the CPU model in SE mode branches
into special “syscall emulation” code. This behavior is not
part of the “live process” component but of the CPU model
itself.

The Target-Agnostic JIT’s test harness injects a syscall
at the exit path(s) of the basic blocks emitted by the JIT in
fine-granularity tests. (The JIT itself never emits syscalls;
the latter are encoutered in the libc functions (let’s ignore
vDSO for simplicity) called from primitives, but not in the
translated bytecode.)

In addition to being a simple marker, such syscall or inter-
rupt instructions can serve as a two-way software/simulator
communication mechanism. For example, they can transmit
the elapsed simulated time (“ticks”) from the simulator to ei-
ther the outer or the inner Smalltalk (via RSP or placing the
value into a simulated register, respectively).

4. Conclusions and Future Work
The experimental embodiment of the GEM5-based debug-
ger built by the author proves it is possible to realize the
repeatability, reversibility and other advantages offered by
simulation in the context of gaining insight into the behavior
of a Smalltalk VM.

The logical next research goal is to create a higher ab-
straction on top of the RSP client such that the simulated
Smalltalk workload can be debugged at the level of the nor-
mal Smalltalk debugger. Indeed, the modular nature of the

simulator allows to introspect the workload’s semantic con-
structs on the simulator side. In fact, such “context trackers”
are what distinguishes simulation as an aid in understanding
the software running under simulation as opposed to merely
executing it (which is what a real machine does). A typi-
cal example are OS process trackers and context switchers
which follow the state of the running OS’s process (which is
an abstract concept existing only within that guest OS).

A number of researchers, including this author, have
built simulator modules for analysis of simulated execu-
tion of Smalltalk and Java runtimes at the VM constructs
level [37, 41]. These modules can parse the object head-
ers and bodies, walk over the Smalltalk stack, track the
ProcessorScheduler’s manipulation of Smalltalk pro-
cesses, etc., so that the programmer can debug the VM at
a high level while enjoying the full benefits of repeatability
and reversibility as well as detailed time and power mea-
surements.

This allows the concept of liveness as defined within the
framework of a “live Smalltalk system” to be generalized to
a continuum of possibilities between the “image evolution”
model of Smalltalk-80 and the “static program declaration”
Algol-like model. In addition to the direct advantages to
Smalltalk debugging such as repeatability and reversibility,
it would then be intriguing to compare the properties of
a high-level out-of-band [37] Smalltalk debugger based on
the techniques proposed in this paper with those of remote
debuggers based on e.g. distributed Smalltalk.

Future work on the debugee JIT itself will attempt to
overcome the equation-theoretic deficiencies of the current
rewrite engine. Further, the author intends to apply his sys-
tem to serve as the implementation substrate for an actual
Smalltalk. Modtalk [20] appears to be a singularly promis-
ing target for such an attempt, for a multitude of reasons.
First, it allows its mechanical components (such as the pro-
posed translator) to interact with a similarly deterministic
mechanical surrounding environment. Second, it specifies
the object layout, object memory access primitives, mes-
saging, garbage collection and other mechanisms which are
traditionally outside of the scope of the translator’s con-
cern, in a general formalism so that the same translator can
also be used to derive the machine code implementing said
mechanisms. Third, in traditional Smalltalk VMs some of
these mechanisms rely on fundamentally untrustworthy im-
plementation substrates. Removing this reliance may enable
certain trustworthy-computing applications the reliability re-
quirements of which are unsatisfiable with today’s main-
stream Smalltalk VM implememtations.

Acronyms
CPU Central Processing Unit.

ELF Executable and Linkable Format.

FS Full-System Simulation Mode.

FSS Full-System Simulation.

GDB GNU Debugger.

GPR General-Purpose Register.

I/O Input-Output.

IR Intermediate Representation.

ISA Instruction Set Architecture.

JIT Just-in-Time Translator.

MMU Memory Management Unit.

OS Operating System.

PDL Processor Description Language.

RSP Remote Serial Protocol.

RTL Register-Transfer Language.

SE Syscall-Emulation mode.

vDSO Virtual Dynamic Shared Object.

VM Virtual Machine.

References
[1] D. Aarno, J. Engblom. Software and System Development

Using Virtual Platforms. Elsevier, 2015.

[2] A. V. Aho, S. C. Johnson. Optimal Code Generation for
Expression Trees. J.ACM, Vol. 23, No. 3, 1976.

[3] A. V. Aho, M. Ganapathi, S. Tjiang. Code Generation
Using Tree Matching and Dynamic Programming. ACM
Transactions on Programming Languages and Systems, 1989.

[4] M. Arnold, M. Hind, B Ryder. An Empirical Study of
Selective Optimization. 13th International Workshop on
Languages and Compilers for Parallel Computing.

[5] R. Auler, P. C. Centoducatte, E. Borin. ACCGen: An
Automatic ArchC Compiler Generator. 24th International
Symposium on Computer Architecture and High Performance
Computing, New York, USA, 2012.

[6] R. Azevedo, et al. The ArchC Architecture Description
Language. International Journal of Parallel Computing, 33(5):
453–484, October 2005.

[7] J. Bastian, S. Onder. Specification of Intel IA-32 Using an
Architecture Description Language. IFIP TC-2 Workshop
on Architecture Description Languages (WADL), Toulouse,
France, 2004.

[8] J. A. Bergstra, J. W. Klop. Conditional Rewrite Rules:
Confluence and Termination. Journal of Computer and
System Sciences 32, 323–362 (1986)

[9] I. Bilicki, et al. Cache Line Reservation: Exploring a Scheme
for Cache-Friendly Object Allocation. Proceedings of the
2009 conference of the Centre for Advanced Studies on
Collaborative Research.

[10] N. L. Binkert, et al. The M5 Simulator: Modeling Networked
Systems. IEEE Micro, Vol. 26, Issue 4, 2006.

[11] M. Bravenboer, E. Visser. Rewriting Strategies for Instruction
Selection. Proceedings of the 13th International Conference
on Rewriting Techniques and Applications. Springer, 2002.

[12] A. Butko, R. Garibotti, L. Ost, G. Sassatelli. Accuracy
evaluation of GEM5 simulator system. IEEE, 7th Interna-
tional Workshop on Reconfigurable Communication-centric
Systems-on-Chip, 2012.

[13] R. G. Cattell. Automatic Derivation of Code Generators from
Machine Descriptions. ACM TOPLAS, Vol. 2, Issue 2, April
1980.

[14] M. H. M. Cheng, M. H. van Emden, D. Stott Parker. A Method
for Implementing Equational Theories as Logic Programs.

[15] L. P. Deutsch, A. M. Schiffman. Efficient Implementation of
the Smalltalk-80 System. ACM, 1983.

[16] M. Ganapathi, C. N. Fischer. Affix Grammar Driven Code
Generation. ACM, 1985.

[17] M. Hohenauer, R. Leupers. C Compilers for ASIPs. Springer,
2010.

[18] F. A. Endo, D. Courouss, H.-P. Charles. Micro-architectural
simulation of embedded core heterogeneity with gem5 and
McPAT. Proceedings of the 2015 Workshop on Rapid
Simulation and Performance Evaluation. ACM, New York,
2015.

[19] F. A. Endo, D. Courouss, H.-P. Charles. Micro-architectural
simulation of in-order and out-of-order ARM microprocessors
with gem5. IEEE, 2014 International Conference on
Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS XIV).

[20] J. Fridstrom, A. Jacques, K. Kilpela, J. Sarkela. Testing
Modtalk. Lecture Notes in Business Information Processing,
Agile Processes, in Software Engineering, and Extreme
Programming — 16th International Conference, XP 2015
Helsinki, Finland, 2015.

[21] D. E. Knuth, P. B. Bendix. Simple word problems in universal
algebras. In: Computational problems in abstract algebra.
Pergamon, 1970.

[22] R. Leupers, P. Marwedel. Retargetable Code Generation
Based on Structural Processor Descriptions. Kluwer, 1998.

[23] R. Leupers, O. Temam (eds.) Processor and System-on-Chip
Simulation. Springer, 2010.

[24] P. Magnusson, B. Werner. Efficient Memory Simulation
in Simics. Proceedings of the 28th Annual Simulation
Symposium. IEEE, Phoenix, Arizona, USA, April 1995.

[25] M. M. K. Martin, et al. Multifacet’s General Execution-driven
Multiprocessor Simulator (GEMS) Toolset. ACM SIGARCH
Computer Architecture News, Vol. 33, No. 4, September
2005.

[26] P. Marwedel, R. Leupers. Instruction Set Extraction from
Programmable Structures. European Design Automation
Conference, Grenoble, France, 1994.

[27] C. J. Mauer, M. D. Hill, D. A. Wood. Full-System Timing-
First Simulation. Proceedings of the ACM Sigmetrics
Conference on Measurement and Modeling of Computer
Systems. 2002.

[28] E. Miranda. The Cog Blog.
http://www.mirandabanda.org/cogblog

[29] E. Miranda. VisualWorks Threaded Interconnect. Smalltalk
Solutions, New York, USA, 1999.

[30] E. Miranda. Context Management in VisualWorks 5i.
OOPSLA, Denver, Colorado, USA, 1999.

[31] P. Mishra, N. Dutt (eds.) Processor Description Languages.
Applications and Methodologies. Morgan Kaufmann Pub-
lishers, 2008.

[32] D. Stott Parker, M. H. M. Cheng, M. H. van Emden. A Prolog
Technology Term Rewriter.

[33] D. Patterson. Future of Computer Architecture. Berkeley
EECS Annual Research Symposium, 2006, Berkeley, Califor-
nia, USA

[34] J. B. Rosenberg. How Debuggers Work: Algorithms, Data
Structures, and Architecture. Wiley Computer Publishing,
1996.

[35] S. H. Nikounia, S. Mohammadi. Gem5v: a modified gem5
for simulating virtualized systems. Springer, The Journal of
Supercomputing, Vol. 71, Issue 4, 2015.

[36] R. N. Sanchez, et al. Using Machines to Learn Method-
Specific Compilation Strategies. CGO’2011.

[37] B. Shingarov. Towards a Smalltalk VM for the 21st Century.
21st International Smalltalk Conference, Annecy, France,
2013.

[38] B. Shingarov. Modern Problems for the Smalltalk VM. In-
ternational Workshop on Smalltalk Technologies, Cambridge,
UK, 2014.

[39] B. Shingarov. The Synthesis of Target-Agnostic JIT. 8th
Smalltalks — Argentina Conference, Córdoba, 2014.

[40] K. Vaswani, et al. Microarchitecture Sensitive Empirical
Models for Compiler Optimizations. IEEE, International
Symposium on Code Generation and Optimization, 2007.

[41] G. Wright et al. Introspection of a Java Virtual Machine under
Simulation. SMLI TR-2006-159, Sun Microsystems, Calif.,
USA, 2006.

[42] G. Zimmermann. The MIMOLA design system: a computer
aided digital processor design method. ACM, 1988.

